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Abstract. ALEKS (“Assessment and LEarning in Knowledge Spaces”)
is an adaptive learning and assessment system based on knowledge space
theory. In this work, our goal is to improve the overall efficiency of the
ALEKS assessment by developing an algorithm that can accurately pre-
dict when the assessment should be stopped. Using data from more than
1.4 million assessments, we first build recurrent neural network classifiers
that attempt to predict the final result of each assessment. We then use
these classifiers to develop our stopping algorithm, with the test results
indicating that the length of the assessment can potentially be reduced
by a large amount while maintaining a high level of accuracy.
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edge space theory · Deep learning

1 Introduction and Background

ALEKS (“Assessment and LEarning in Knowledge Spaces”) is a web-based,
artificially intelligent system [17] based on knowledge space theory (KST) [5–
7]. The foundation of ALEKS is an adaptive assessment that aims to precisely
and efficiently identify the topics in an academic course that a student knows.
ALEKS Placement, Preparation and Learning (ALEKS PPL) is a specialized
product that has been developed to offer recommendations for placing students
in post-secondary mathematics courses.

Deep learning has recently achieved dramatic successes in various fields [14]
and is beginning to move into the education domain. In particular, because of the
sequential nature of many types of educational data, recurrent neural networks
(RNNs) are appearing more frequently in the educational literature [1, 11–13,
15, 18, 21]. Our goal is to augment the performance and efficiency of the KST-
powered adaptive assessment algorithm of ALEKS PPL with the classification
strengths of RNN models.

In KST, an item is a problem type that tests a discrete unit of the curriculum.
A knowledge state is a set of items that a student masters, and a knowledge space
is the collection of all such feasible knowledge states. At all times in an ALEKS
PPL assessment, the 314 items under consideration are partitioned into the
following categories:
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– items that are most likely in the student’s knowledge state (in-state);
– items that are most likely not in the student’s knowledge state (out-of-state);
– the remaining items (uncertain).

The assessment terminates when either (a) there are no remaining “uncertain”
items, or (b) the predetermined limit of 29 questions is reached.1 The assessment
then returns the in-state items as its best estimate of the student’s knowledge
state. Most ALEKS PPL assessments reach the maximum limit of 29 questions
and thus end with a number of “uncertain” items. The percentage score of the
student is simply the percentage of the 314 items that are categorized as being
in-state. Based on the value of the percentage score at the end of the assessment,
ALEKS PPL recommends placement in one of six different mathematics courses
(see [4] for further details and background on ALEKS PPL).

2 Experimental Setup and Models

The data for our experiments consist of 1,449,625 full-length (i.e., 29 question)
ALEKS PPL assessments, with each assessment being taken by a unique stu-
dent for placement purposes in a college or university setting. We use 50,000
assessments for a held-out test set, another 50,000 for a validation set to tune
hyperparameters and compare several models, and the remainder (1,349,625)
for training our models. Each assessment generates a sequence of inputs, and
the target (ground truth) label for each sequence is determined by the course
placement recommendation made by the ALEKS system using all 29 questions
from the assessment. Thus, the results of the ALEKS PPL assessment can be
viewed as a multiclass classification problem with six different class labels, one
for each of the possible course placement recommendations.

For our RNN models, we use two different recurrent units: gated recurrent
units (GRU) [2] and long short-term memory (LSTM) units [9]. We include
both models in our experiments since there currently is not a consensus that
one architecture or the other gives superior performance, as several studies have
not revealed a clear winner; these include studies both within the education
domain [1, 12], as well as from the broader AI community [3, 22]. Additionally,
as a comparison, we also build a set of logistic regression classifiers.

Our models will use the actual item categorizations of the ALEKS assessment
as features. Thus, we require 3 × 314 = 942 independent variables to represent
all possible combinations of assessment categories (in-state, out-of-state, and un-
certain) and items. The n-th vector of each sequence contains the categorization
of the items by the assessment after question n.

For the LSTM and GRU models, the number of hidden layers, the sizes of the
hidden layers, and the learning rate are tuned on the validation set. We also use

1 Students actually answer up to 30 questions when accounting for a randomly chosen
question that is used for validation and other statistics. This number of questions
balances the need to gather enough information about the student’s knowledge state
against the possibility of overwhelming the student. Regarding the latter concern, see
[16] for evidence of a “fatigue effect” experienced by students in ALEKS assessments.
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batch normalization [10] and, to help prevent overfitting, early stopping [19] and
dropout [8, 20]. For the logistic regression models, the only tuned hyperparameter
is the strength of the L2 regularization.

3 Stopping Algorithm and Model Evaluation

The best performing models on the validation set are used to implement our
stopping algorithm for the ALEKS assessment. As shown in Algorithm 1, our
first criterion is that the most confident predicted class label is above a certain
threshold, α. Additionally, we require that the course placement recommendation
at the current question (as determined by the student’s percentage score at that
point in the assessment) matches the classifier’s predicted class label, and we
also require that the assessment has asked at least 10 questions (to ensure that
our classifier has a minimal amount of data to work with).

Algorithm 1 Assessment stopping algorithm

Inputs:
α, stopping threshold probability
P (k |xn), predicted probability of class k, k = 1, . . . , 6, after question n
Kn = arg maxk=1,...,6 P (k |xn); i.e., the most likely class after question n
Cn, the current recommended course placement after question n

Iterations:
for n = 10 to 29 do

Compute Kn and Cn using information from questions 1 to n
if n == 29 or

(
P (Kn |xn) > α and Kn == Cn

)
then

Stop the assessment
end if

end for

Output:
Cn, the (predicted) course placement recommendation

The results from applying Algorithm 1 to the held-out test data are shown in
Figure 1, where we plot the average assessment length versus the accuracy of the
predicted course placement recommendation, for various probability thresholds
(i.e., various values of α). The plot shows that at any accuracy rate of 0.995 or
higher, the RNN models are a minimum of 1.5 questions better than the logistic
regression, with the maximum difference being about 2.2 questions.

Next, Table 1 shows the results for the LSTM RNN model partitioned by
the actual (ground truth) classification label, using a value of α = 0.99. The
best results are for the extreme labels 1 and 6; on the other hand, while still
being acceptable, the gains are not nearly as large for labels 4 and 5. It is worth
mentioning that these results closely parallel what was found in [4], where it was
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Fig. 1. Average assessment length vs. accuracy on held-out test data.

shown that ALEKS PPL has the greatest variability for labels 4 and 5, and it
seems likely that this variability is a major reason for the weaker performance
of the stopping algorithm with these labels.

Table 1. Stopping statistics by ground truth label for the LSTM RNN model on
held-out test data, using a threshold of α = 0.99.

Class label 1 2 3 4 5 6

Sample size 4357 8680 11108 7640 8259 9956

Average length 17.87 21.74 22.25 24.75 25.8 16.54

Accuracy 0.9963 0.9955 0.9959 0.9921 0.9921 0.9971

4 Discussion

The results from applying our stopping algorithm on a held-out test set show a
large potential reduction in the average length of the ALEKS PPL assessment.
For example, Figure 1 shows that at an accuracy of 0.995 the average number
of questions for the RNN models is about 21.6, a roughly 25% reduction from
the full-length assessment of 29 questions. Additionally, the GRU and LSTM
models perform equally well, with both outperforming the logistic regression
model, adding further evidence to the growing literature supporting the benefits
of applying RNN models to educational data. Of note is that we use a relatively
general approach, in that the features are obtained simply by taking the output
of the assessment and feeding it to an RNN. The effectiveness of this technique
here motivates the need for further studies involving other adaptive assessments;
at the moment, it is not clear if this approach can be successful more generally,
or if it is some peculiarity of ALEKS PPL that allows it to work so well.
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