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Abstract. Identifying students who are at-risk of failing a mathematics course 

at the earliest possible moment allows for support and scaffolding to be applied 

when it can have greatest impact. However, because risk of non-success can 

arise from a complex interaction of factors, early detection of struggling stu-

dents is difficult. Machine learning is particularly suited to modeling this chal-

lenging interplay of variables. In this study, we measure how well machine 

learning models can identify at-risk students before an entry-level university 

calculus course begins. Five classification algorithms were applied to data com-

bined from the student information system, an adaptive placement test, and a 

student survey. We were able to produce predictions before class start that were 

competitive with other studies using course activity data after coursework be-

gan. In addition, important features of the model provided insights into possible 

causes of student non-success. 
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1 Introduction 

Using machine learning (ML) for early alert systems of students at-risk in higher edu-

cation has been an important application of learning analytics [1–5]. While there are 

many levels of early alert systems, our focus has been on course-level predictions 

especially in mathematics. The importance of completing calculus in the student’s 

first attempt is critical in university majors related to science, technology, engineer-

ing, and math (STEM) [6–9]. However, calculus represents a substantial barrier to 

completing these majors especially for female students and students from underrepre-

sented populations [10–11]. Early detection of students who may be struggling in 

these calculus courses is critical for intervention, scaffolding and support.  

 Often by the time gradebook data, used by many instructors for assessing 

risk, has made it clear that a student is failing calculus, over half the course is com-

plete, making changing the outcome of that student difficult. While machine learning 

models are a viable alternative to instructor gradebooks for assessing risk of failure, 

most studies featuring predictive models depend heavily on course activity data from 

a learning management system (LMS) or a mathematics learning platform to classify 

students, making early, accurate predictions difficult when interventions are critical 

but course activity data is sparse [12–13]. For this reason, there is a lack of studies 
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using machine learning predictive models before higher education courses begin [2–

4]. 

 This research contributes to this field of study by using placement assess-

ment data as an alternative to course activity data for very early predictions in a high-

er education mathematics course. While a placement exam is a predictive model in 

itself, we hypothesized that combining data from the student information system (SIS) 

with placement data could yield classifications related to risk of failure with similar 

predictive power to classifications made in other studies with course activity data. 

Because these predictions would be available before the course begins, early interven-

tion and allocation of limited resources for support and scaffolding could be strategi-

cally targeted when they could have the greatest impact.  

 One other source of pre-course data that was available to us for this study 

was a survey regarding math background that students filled out before the placement 

exam. Although this data was self-report, we were interested to see if this could also 

make a significant contribution to our model.  

 To this end, we conducted this study with these three research questions in 

mind: 

RQ1: How would a machine learning predictive model, limited to data only avail-

able before the course starts, compare to predictive models using course ac-

tivity data in accurately identifying at-risk calculus students? 

RQ2: Which features of the model would be most important in predicting student 

risk? 

RQ3: How much lift would be contributed to the predictions of the model from 

data derived from the SIS, placement test, and the self-report student survey? 

2 Method 

The data used in this study came from historical data of 6,380 undergraduate students 

enrolled in the course, Calculus for Engineers I. The label used for the supervised 

learning classification was “At-Risk” for students who achieved a final letter grade of 

‘C’ or below, and “Not At-Risk” for students who achieved a final letter grade ‘C+’ 

or above with the reasoning that students who barely passed the course with a ‘C’ 

grade might be underprepared and have more in common with at-risk students than 

not at-risk students. Of our total population, 2,739 (43%) were labeled “At-Risk,” and 

3,641 (57%) were labeled “Not At-Risk.” So, a baseline model for this data based on 

the majority class should be considered 57%. 

 The genders of the students in this study were 23% female and 77% male, 

and the age breakdown was 83% at or below 22 years old, 11% 23-30 years old, and 

6% over the age of 30. Two proxies were used for socio-economic status. Students 

who were first generation college students made up 28% of our sample, and Pell eli-

gible students made up 33%. The ethnicity breakdown was Asian 15%, Black 4%, 

Hawaii/Pac < 1%, Hispanic 21%, Native Am. 1%, No Report 3%, Two or more 5% 

and White 50%.  

 This data was merged with other academic and grade information from the 

SIS that would have been available before students began the calculus course, data 
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from the placement test and the student self-report survey, and some engineered fea-

tures from the SIS data that we thought might be predictive of risk. 

The placement data used was from the ALEKS Placement, Preparation, and 

Learning (PPL), a specialized adaptive placement test developed to offer recommen-

dations for placing students in post-secondary mathematics courses [14]. All this data 

was merged with three features from the self-report survey that was attached to the 

placement test. These three features were “last math level,” “last math class,” and 

“last math grade.” 

Five ML methods were used for classification comparison: Logistic Regres-

sion, Support Vector Machines (SVM), K-Nearest Neighbors, Random Forest, and 

CatBoost. All of these methods except CatBoost were accessed through the Scikit-

learn Python machine learning library [15]. CatBoost, a newer method, seeks to miti-

gate prediction shifts that are present in most implementations of gradient boosting by 

means of ordered target statistics associated with categorical variables [16–17]. The 

dataset was split into subsets, 80% for training and 20% for testing. Ten-fold cross 

validation was used to limit overfitting in our training set and increase generalization. 

The GridSearch CV library from Scikit-learn, which exhaustively considers all pa-

rameter combinations, was used for hyperparameter tuning. 

A post-hoc algorithm was employed to extract feature importance from the 

black-box models and measure the lift of the different datasets. There are several new 

methods for model explainability; however, we chose Permutation Feature Im-

portance (PMI) because it does not suffer from bias toward categorical variables as do 

some other methods [18–20]. 

 

3 Results 

A comparison of the performance of the differing ML methods is presented in Fig. 1.  

 

Fig. 1. Comparison of ROC curves for the five methods tested. 
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The receiver operating characteristic (ROC) is a performance measure of models at 

various threshold settings and is used to summarize the performance of models over a 

wide range of conditions. Of the five methods tested, CatBoost outperformed the 

other four machine learning methods with an area under the curve (AUC) of 0.81. The 

overall accuracy of our best model was 0.74, with a recall of 0.73, and an F1 score of 

0.71.  

The Permutation Feature Importance algorithm scored each of the 46 features 

in terms of the contribution to the predictive power of our best model. The top five 

features were previous term GPA, last math class, part-time, placement test, and fac-

ulty difficulty with PFI scores of 0.049, 0.038, 0.035, 0.029 and 0.024 respectively. 

By grouping the features from each dataset and using the PFI algorithm, we 

were able to score the impact of each dataset on the predictive power of the model. 

The scores for the three datasets were: SIS (0.148), ALEKS PPL (0.051), and survey 

(0.047). 

4 Discussion and Conclusions 

RQ1: Our first research question was aimed at measuring how well the models could 

predict who was at-risk of failing calculus before the course started without any 

course activity data. The ROC curves in Fig. 1 demonstrate that our predictions are 

comparable to other models using activity data in the first few weeks of a course [12–

13]. RQ2: Using a post-hoc, model explainability algorithm, we were able to deter-

mine five features that were most important in early prediction of Calculus for Engi-

neers I: previous term GPA, the last math class taken, official part-time status of the 

student, placement test data, and how hard an instructor typically grades their stu-

dents. All three datasets used in this study had features represented in the top five. 

RQ3: Of the three datasets, features derived from the student information system 

were most predictive, with the placement test being second, and survey data coming 

in third.  

 Because accurate early detection is possible, scarce resources, scaffolding 

and support can be targeted to students who need it the most when the impact of those 

interventions can help students at-risk get off to a strong start. Moreover, because this 

kind of data is typically available for all entry level math courses at the university, it 

is possible to construct similar models for other critical math courses as well. Future 

work will focus on developing these models for other courses and combining these 

models with course activity data after classes start for even more accurate student 

modeling and weekly predictions that can guide interventions throughout the course 

for increased student success. 
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