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Abstract

Approximately counting and sampling knowledge states from a knowl-
edge space is a problem that is of interest for both applied and theoretical
reasons. However, many knowledge spaces used in practice are far too
large for standard statistical counting and estimation techniques to be
useful. Thus, in this work we use an alternative technique for counting
and sampling knowledge states from a knowledge space. This technique is
based on a procedure variously known as subset simulation, the Holmes-
Diaconis-Ross method, or multilevel splitting. We make extensive use of
Markov chain Monte Carlo methods and, in particular, Gibbs sampling,
and we analyze and test the accuracy of our results in numerical experi-
ments.
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1 Introduction

Knowledge spaces are combinatorial structures that are used to model the
knowledge of learners in various academic fields of study (Doignon and Fal-
magne, 1985; Falmagne et al., 2013; Falmagne and Doignon, 1988, 2011). Given
a set of items from such a field, a knowledge space contains all the subsets of
these items that can realistically be known by a learner at a given time; these
subsets of items are known as knowledge states. Because of the combinatorial
nature of knowledge spaces, the number of knowledge states can grow exponen-
tially with the number of items—this can lead to knowledge spaces of immense
size, even when the number of items is relatively small. Due to these issues,
many knowledge spaces used in practice are far too large for standard statistical
counting and estimation techniques to be applied. Thus, accurately estimating
the size of a given knowledge space is a challenging problem that requires the
use of specialized techniques.
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Both sampling and counting knowledge states have several uses in educa-
tional assessment. For example, as mentioned in Eppstein (2013a), knowing
the distribution of the knowledge states gives information on the distribution
of the items throughout the knowledge space, which can be taken advantage
of by an adaptive assessment algorithm. A related observation is that a sam-
ple of knowledge states can also be used to assess how accurately a knowledge
space fits empirical data, thus leading to more accurate procedures for building
knowledge spaces. As yet another practical example, being able to compare the
sizes of two versions of a knowledge space can be useful since, all else being
equal, a smaller knowledge space is more efficient for an adaptive assessment
algorithm. Next, from a more theoretical standpoint, having a procedure for
estimating the size of a knowledge space would allow one to compare this value
with other characteristics of the space, possibly giving further insight into the
combinatorial nature of the structure. Finally, given the enormous numbers of
states contained in many knowledge spaces, an argument could be made that
having a reasonable estimate for the size of a knowledge space—or even a rel-
atively accurate lower bound—would be of interest for no other reason than
simply satisfying intellectual curiosity.

However, the problem of accurately estimating the size of a knowledge space
is complicated by two somewhat contradictory issues. On the one hand, many
knowledge spaces that are used in practice are far too large to allow a direct
computation of the number of knowledge states; no existing computer would be
able to complete such a computation in any reasonable amount of time. Knowing
that, a different approach would be to estimate the size of a knowledge space
by drawing samples from a larger family that contains the knowledge space,
a family for which an accurate estimate of the size exists; an example of a
larger such family would be the power set of the items in the knowledge space.
Then, by finding the proportion of sets from this larger family that belong to the
knowledge space, we would have our estimate for the size of the knowledge space.
As before, however, this technique is ineffective for many knowledge spaces that
are used in practice—the proportion of sets belonging to the knowledge space
would be too small for standard estimation techniques to accurately estimate.

Thus, to estimate the size of a knowledge space we employ a technique that
has been used in various areas of probability, combinatorics, and computer sci-
ence; furthermore, it has also appeared in the analysis of the reliability of engi-
neering systems. In the probability and combinatorics literature it is sometimes
called the Holmes-Diaconis-Ross method (Diaconis and Holmes, 1995; Ross,
2002), in the engineering field it is known as subset simulation (Au and Beck,
2001), and in the rare event literature it is called multilevel splitting (Cérou
et al., 2012; Glasserman et al., 1999). The key idea of the method, that of using
a nested sequence of events, is attributed to John von Neumann, where it first
appeared in the work of Kahn and Harris (1951).

The outline of the paper is as follows. We begin with an introduction to
knowledge space theory (KST), where we review the basic concepts and existing
results that are needed for this work. In subsequent sections we then discuss
Markov chain Monte Carlo (MCMC) methods in detail, as these methods form
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a core component of our procedure for estimating the size of a knowledge space.
In addition to providing background information, we also prove a couple of
results that show the Gibbs sampler, a particular MCMC method, satisfies the
necessary conditions to be properly applied to the current problem. In the
remainder of the work we then outline the specific details of our algorithm for
estimating the size of a knowledge space, and we then evaluate its effectiveness
in a set of numerical experiments.

2 Background

In this section we give a brief background of knowledge space theory (KST),
where we introduce the relevant material that is necessary for developing our
later methods and experiments. For a more thorough treatment of KST, we
refer the reader to Falmagne and Doignon (2011). We begin by introducing the
related notions of a knowledge structure and a knowledge space.

Definition 2.1. A knowledge structure is a pair (Q,K) in whichQ is a nonempty
set, and K is a family of subsets of Q, containing at least Q and the empty set
∅. The set Q is called the domain of the knowledge structure. Its elements are
referred to as questions or items and the subsets in the family K are labeled
(knowledge) states. Since ∪K = Q, we shall sometimes simply say that K is
the knowledge structure when reference to the underlying domain is not neces-
sary. A family of sets F is closed under union if for any sets A,B ∈ F, we have
A ∪B ∈ F. If a knowledge structure K is closed under union, we say that K is
a knowledge space.

Throughout this work we assume that Q is a finite set. Two useful concepts
associated with families of sets are well-gradedness and 1-connectedness, which
we define as in Doignon and Falmagne (1997) and Doble et al. (2001).

Definition 2.2. Let ∆ denote the standard symmetric difference operation
between sets. Given a family of sets, F, a finite sequence of sets

A = K0,K1, . . . ,Kn = B

in F is called a (stepwise) path between A and B if |Ki−1∆Ki| = 1 for all
i = 1, . . . , n. If, additionally, |A∆B| = n, the sequence of sets is called a tight
path between A and B. The family F is 1-connected if there exists a stepwise
path between any A,B ∈ F, and it is well-graded if there exists a tight path
between any A,B ∈ F.

Example 2.3. Consider the following family of sets.

F = {{a}, {c}, {a, b}, {b, c}, {a, b, c}}

The only path from {a} to {c} in F is given by

{a}, {a, b}, {a, b, c}, {b, c}, {c}. (2.1)
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Note, however, this is not a tight path as it contains four total steps, but
|{a}∆{c}| = 2. So, F is not well-graded, but it is 1-connected; this is easily
seen by noting that (2.1) contains a (sub)path between each possible pair of
sets. On the other hand, suppose we were to add the set {a, c} to F, resulting
in a new family F′:

F′ = {{a}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}.

There now exists a tight path from {a} to {c} in F′ of the form

{a}, {a, c}, {c}.

Additionally, it is straightforward to check that a tight path exists between each
pair of sets in F′; thus, it follows that F′ is well-graded.

A learning space is a particular type of knowledge space whose properties are
motivated by the following pedagogical assumptions, as they appear in Falmagne
and Doignon (2011).

Definition 2.4. A knowledge structure (Q,K) is called a learning space if it
satisfies the following conditions.

[L1] Learning smoothness. For any two knowledge states K,L such that
K ⊂ L, there exists a finite chain of knowledge states

K = K0 ⊂ K1 ⊂ · · · ⊂ Kp = L

such that |Ki \Ki−1| = 1 for 1 ≤ i ≤ p and so |L \K| = p.
[L2] Learning consistency. If K,L are two knowledge states satisfying K ⊂ L

and q is an item such that K ∪ {q} ∈ K, then L ∪ {q} ∈ K.

Note that, while originally introduced for pedagogical reasons, learning smooth-
ness is actually a special case of the well-graded property. In fact, it was shown
in Cosyn and Uzun (2009) that a well-graded knowledge space is equivalent to
a learning space. Additionally, a well-graded knowledge space that is closed un-
der intersection is called an ordinal knowledge space. Ordinal knowledge spaces
have several properties that make them computationally appealing. In particu-
lar, Birkhoff’s theorem (Birkhoff, 1937) allows us to define a partial order on the
items in an ordinal knowledge space K; furthermore, this partial order uniquely
defines the ordinal knowledge space (see, for example, Eppstein, 2013a or Sec-
tion 3.8 in Falmagne and Doignon, 2011). Having this partial order gives us a
concise way to represent the ordinal knowledge space and to efficiently check if
a set of items is part of the knowledge space.

To see this, we can derive the partial order for an ordinal knowledge space K

as follows. Let q, r be items in our domain of knowledge, Q, and suppose that
whenever a knowledge state K ∈ K contains r it also contains q; in this case,
we have the ordering q < r. More formally, for any q ∈ Q we can define

Kq = {K ∈ K | q ∈ K},
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the family of all knowledge states containing q. Then, q < r if and only if
Kr ⊂ Kq. Furthermore, given an arbitrary set A ⊆ Q, we now have a simple
procedure for checking if A ∈ K. That is, it can be shown that A ∈ K if and
only if for any q ∈ A we have ∩Kq ⊆ A (for example, see Sections 3.4 and 3.6
in Falmagne and Doignon, 2011).

Most likely due to the computational advantages afforded by ordinal knowl-
edge spaces, many knowledge spaces used in practice are ordinal (Desmarais
and Pu, 2005; Doignon and Falmagne, 2016; Lynch and Howlin, 2014). Fur-
thermore, while technically outside the field of KST proper, in related areas
of education research the idea of having a partial order among the topics in a
domain of knowledge is becoming more prevalent (Chaplot et al., 2016; Chen
et al., 2018; Liang et al., 2015). Thus, while we prove our theoretical results
for the general class of well-graded knowledge spaces whenever possible, for all
of the above reasons we focus exclusively on ordinal knowledge spaces in our
numerical experiments.

To that end, in our analyses we need to make use of the following definition,
as it appears in Eppstein (2013b).

Definition 2.5. A chain in a partial order is a set of elements in which each
pair of elements is comparable; equivalently, it is a sequence of items q0, q1, . . .
such that qi < qj if and only if i < j. A chain cover is a set of chains that
together include all the items in the order. An antichain is a set of items, no
two of which are comparable to each other. The width of a partial order is the
maximum cardinality of any of its antichains, or equivalently—by Dilworth’s
Theorem; see below—the minimum number of chains in a chain cover.

Given a chain cover of the items in Q, it is straightforward to remove items
from each chain until we are left with a partition of the items in Q; thus, in
what follows, we assume that we are always dealing with a chain cover that is
also a partition.

For completeness, we have included the statement of Dilworth’s theorem
below (Dilworth, 1950).

Theorem 2.6 (Dilworth’s Theorem). Let Q be a partially ordered set (e.g.,
the items in an ordinal knowledge space). There exists an antichain A, and a
partition of the set into a family of chains, C, where the size of A equals the
number of chains in C. In this case, C is a minimal chain covering of Q, and the
width of K is defined to be the sizes of A and C.

Following the procedure outlined in Eppstein (2013b), we can represent an
ordinal knowledge space K as a bipartite graph, which then allows us to use
the Hopcroft-Karp algorithm (Hopcroft and Karp, 1973) to efficiently compute
a minimal chain covering C of Q; in our numerical experiments, we use the
implementation from Eppstein (2002) to perform these specific computations.

We conclude this section with the following example illustrating several of
the concepts from the previous paragraphs.

5



Example 2.7. Consider the following knowledge space on Q = {a, b, c, d}.

K = {∅, {a}, {b}, {a, b}, {a, c}, {b, d}, {a, b, c}, {a, b, d}, {a, b, c, d}} (2.2)

Note that K is an ordinal knowledge space, as it is both well-graded and
intersection-closed. From (2.2), we obtain the following partial order repre-
senting K:

a < c and b < d. (2.3)

That is, a is in every state containing c, while b is in every state containing d.
Defining the chains

C1 = {a, c}
C2 = {b, d},

we can see that, based on (2.3), C = {C1,C2} is a chain cover of the items in
Q. Additionally, as a is not comparable to b and c is not comparable to d,
A = {a, b}, B = {c, d}, C = {a, d}, and D = {b, c} are all antichains of the
same size as C; hence, by Dilworth’s Theorem, it follows that C is a minimal
chain cover of the items in Q.

3 Estimating the size of a knowledge space

In this section we give a brief overview of the main technique we employ to
estimate the size of a knowledge space. As mentioned previously, this method
has been applied in many areas of probability, combinatorics, computer science,
and engineering. It appears as the Holmes-Diaconis-Ross method (Diaconis
and Holmes, 1995; Ross, 2002) in the probability and combinatorics literature,
subset simulation (Au and Beck, 2001) in the engineering field, and multilevel
splitting (Cérou et al., 2012; Glasserman et al., 1999) in the rare event literature.
The underlying idea of the method is to use a nested sequence of events that
terminates at the (rare) event of interest—this insight first appeared in the work
of Kahn and Harris (1951), where it is attributed to John von Neumann.

The intuition is the following. Let F be an event for which we want to
estimate the probability of occurrence. By assumption, F is a rare event, which
means P (F) is very small and, as such, directly estimating its value is not
feasible. Following the procedure as it is described in Au and Beck (2001), we
can instead construct a decreasing sequence of events, Ei, which terminates at
F:

En ⊃ En−1 ⊃ · · · ⊃ E1 ⊃ E0 = F.
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Since the events Ei are nested, we then have

P (F) = P (E0) = P

(
n⋂

i=0

Ei

)

= P

(
E0

∣∣∣∣∣
n⋂

i=1

Ei

)
P

(
n⋂

i=1

Ei

)

= P (E0 |E1)P

(
n⋂

i=1

Ei

)
...

= P (En)

n−1∏
i=0

P (Ei |Ei+1) . (3.1)

Without loss of generality, we can assume that P (En) = 1. Thus, our problem
of estimating P (F) has now been transformed into one of estimating a sequence
of conditional probabilities

P (Ei |Ei+1), i = 0, . . . , n− 1, (3.2)

where it is assumed that each conditional probability is easier to estimate than
P (F).

The next step in the process is to generate samples from each of the Ei’s;
doing this allows us to accurately estimate the conditional probabilities given by
(3.2). To generate these samples, we use Markov chain Monte Carlo (MCMC)
simulation. This connection between sampling and approximate counting has
been known for some time (Jerrum et al., 1986; Sinclair and Jerrum, 1989), and
such techniques have found widespread use in combinatorics to solve various
counting and estimation problems; examples include estimating the permanent
of a matrix (Jerrum et al., 2004) and approximately counting the number of
solutions to the 0-1 knapsack problem (Morris and Sinclair, 2004). In the next
section we give a brief introduction to Markov chain theory and the machinery
that we need for our MCMC simulations. For more thorough introductions to
these concepts, we refer the reader to Brémaud (1999) and Norris (1998) (for
general Markov chain theory), or Liu (2001) and Robert and Casella (2004) (for
more on MCMC methods).

4 Markov chain Monte Carlo

Let X1, X2, . . . be a sequence of random variables taking values in a set S. Such
a sequence is called a Markov chain if the value of the sequence at time n + 1
only depends on the value at time n. Formally, for any i0, i1, . . . , in, in+1 ∈ S,
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this is written as

P (Xn+1 = in+1 |Xn = in, Xn−1 = in−1, . . . , X1 = i1, X0 = i0) =

P (Xn+1 = in+1 |Xn = in),∀n ∈ N0. (4.1)

At this point, we must say a few words about terminology. In the standard
Markov chain literature, any i ∈ S is typically referred to as being a state
of the Markov chain, with S then being called the state-space of the Markov
chain. Thus, to avoid confusion with standard knowledge space terminology,
we explicitly use the term “knowledge state” whenever we are referring to a set
of items coming from a knowledge space, and we reserve the shortened version
“state” for the values of a Markov chain.

For our purposes, a Markov chain state is composed of a subset of the items
in a domain of knowledge Q. Since we are assuming that Q is a finite set, the
state-space of any Markov chain we encounter is also finite. We can then define
the transition matrix P of a Markov chain Xn as follows:

P = {pij}i,j∈S
= P (Xn+1 = j |Xn = i).

Thus, P is a matrix of size |S|×|S|, where the ij-th entry gives the probability of
the Markov chain jumping from state i to state j after one time step. Using the
finiteness of the state-space once again, we can define a probability distribution
π on the states of S as a row vector of length |S| whose entries sum to one.
Furthermore, such a distribution is said to be stationary with respect to P if

πT = πTP. (4.2)

One property of Markov chains that is important for our later results is the
following.

Definition 4.1. A Markov chain is said to be irreducible if any state can be
reached from any other state. That is, given any two states A and B, the
Markov chain has a non-zero probability of transitioning from state A to state
B after a finite number of steps.

The main idea of Markov chain Monte Carlo is to construct a Markov chain
that converges to the distribution in which we are interested in sampling from.
One general procedure for constructing such a chain is the following. Let P be a

probability distribution on a set S, and let Xn =
(
x
(1)
n , . . . ,x

(J)
n

)
be a value from

S, where each component x
(j)
n refers to a group of one or more variables (or, in

our case, items). To generate a new value Xn+1 =
(
x
(1)
n+1, . . . ,x

(J)
n+1

)
, we sample

the components individually as follows. For each value x
(j)
n , we sample the new

value, x
(j)
n+1, conditioned on the newly updated values of x

(1)
n+1, . . . ,x

(j−1)
n+1 . How-

ever, at the same time, we also condition on the remaining values that have yet to
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be updated, x
(j+1)
n , . . . ,x

(J)
n . Thus, the j-th component is updated based on the

conditional distribution given by P
(
x
(j)
n+1

∣∣∣ x
(1)
n+1, . . . ,x

(j−1)
n+1 ,x

(j+1)
n , . . . ,x

(J)
n

)
.

This general procedure is known as Gibbs sampling.

Algorithm 1 Gibbs sampler

Start with an initial sample X0 =
(
x
(1)
0 , . . . ,x

(J)
0

)
for n = 0 to N − 1 do

Sample x
(1)
n+1 from P

(
x
(1)
n+1

∣∣∣ x
(2)
n , . . . ,x

(J)
n

)
for j = 2 to J − 1 do

Sample x
(j)
n+1 from P

(
x
(j)
n+1

∣∣∣ x
(1)
n+1, . . . ,x

(j−1)
n+1 ,x

(j+1)
n , . . . ,x

(J)
n

)
end for
Sample x

(J)
n+1 from P

(
x
(J)
n+1

∣∣∣ x
(1)
n+1 . . . ,x

(J−1)
n+1

)
Xn+1 ←

(
x
(1)
n+1, . . . ,x

(J)
n+1

)
end for

The Gibbs sampler is a Markov chain Monte Carlo method that first ap-
peared in Geman and Geman (1984) and was later introduced to the statistics
literature in Gelfand and Smith (1990). Because it samples from the conditional
distributions of groups of one or more variables, rather than the full distribution,
the Gibbs sampler is well-suited to problems where the number of dimensions is
high. It has been observed that grouping the components into blocks—known
as blocked Gibbs sampling—can help to increase the convergence speed of the
chain (Amit and Grenander, 1991; Roberts and Sahu, 1997). As we discuss
in Section 6, using the blocked components gives us an efficient way to gener-
ate states from a Markov chain using the partial order properties of an ordinal
knowledge space. Thus, for these reasons, all of our numerical experiments use
the blocked Gibbs sampler. (For more information on the Gibbs sampler see
Brooks et al., 2011; Casella and George, 1992; Kroese et al., 2011).

5 Gibbs sampler on a knowledge space

Let Xn =
(
x
(1)
n , . . . ,x

(J)
n

)
represent a sample value of items in Q, where each

x
(j)
n is a vector of indicator functions for a group of one or more items. In this

section we show that, under certain conditions, the Gibbs sampler has the nec-
essary convergence properties. In other words, given a probability distribution
P on some family of sets, the distribution of the samples generated by the Gibbs
sampler converges to P . To start, we need the following definition.

Definition 5.1. Let F be an arbitrary family of sets with ∪F = Q. For any
subset of items A ⊆ Q, we can define the function

dF(A) := min
{B∈F |A⊆B}

|B \A|. (5.1)
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For a set A ⊆ Q, dF(A) gives the minimum number of items that would need
to be added to A in order to obtain a set in F; in the specific case when F is
a knowledge structure, it gives the distance from the smallest knowledge state
containing A. Alternatively, we could have defined dF as the distance from the
largest set contained in A; admittedly, this would be easier to work with when
dealing with a knowledge space that is not closed under intersections. However,
since we focus exclusively on ordinal knowledge spaces in our experiments, Def-
inition 5.1 gives a slight improvement in computational efficiency. Yet another
option would have been to define dF as the distance from the closest set to
A, regardless of whether that set contains A or is contained in A. However,
such a computation is less efficient than either of the previous options, as it
would require computing both the smallest set containing A and the largest set
contained in A, and then taking the minimum distance to A between the two.

Next, we can define our sequence of nested events as follows.

Definition 5.2. Let F be as in Definition 5.1, and let E be a family of sets such
that F ⊆ E and ∪E = Q. For any i ∈ N0, let

EF
i = Ei := {A ∈ E | dF(A) ≤ i}. (5.2)

We are now ready to prove our first result, which shows that for a well-
graded knowledge space K and a learning smooth family E, where K ⊆ E, the
family Ei is 1-connected.

Lemma 5.3. Let K be a well-graded knowledge space with ∪K = Q, and let
E be a learning smooth family such that K ⊆ E. For any i ∈ N0, let Ei = EK

i

be defined as in (5.2). Then, for any sets A,B ∈ Ei, there exists a sequence
Dj ∈ Ei, j = 0, . . . ,m, such that A = D0, B = Dm, and |Dj−1∆Dj | = 1, for
any j = 1, . . . ,m; in other words, the family Ei is 1-connected.

Proof. Let A,B ∈ Ei. By the definition of Ei, there exist Ã, B̃ ∈ K such that
A ⊆ Ã, B ⊆ B̃, |Ã \A| ≤ i and |B̃ \B| ≤ i. Since K is well-graded, there exists

a tight path in K (and, hence, in Ei) from Ã to B̃. Thus, if we can show that

there exist paths in Ei from A to Ã and B to B̃, the result then follows. Note
that since A and B are arbitrary sets in Ei, we only need to show this for one of
them; so, without loss of generality, we next show that A and Ã are connected
by a path in Ei.

Since A, Ã ∈ E and A ⊆ Ã, by the learning smoothness of E there exists a
tight path, C1, . . . , Cn, from A to Ã. Note that for any Cj we have A ⊆ Cj ⊆ Ã;

thus, since |Ã \A| ≤ i it is clear that |Ã \Cj | ≤ i as well, which in turn implies
that Cj ∈ Ei. As discussed in the previous paragraph, this same argument holds

for B and B̃, and the result then follows.

Let x
(1)
n , . . . ,x

(J)
n be the components of the blocked Gibbs sampler. Then,

for any two sets A =
(
A(1), . . . , A(J)

)
, B =

(
B(1), . . . , B(J)

)
∈ Ei, we say that

A ∼k B if A(l) = B(l) for any l ∈ {1, . . . , J} \ {k}. We are now ready to prove
our main result.
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Theorem 5.4. Let K and E be as in Lemma 5.3. For any i ∈ N0, let πi
be a probability distribution on Ei, where πi(X) > 0 for any X ∈ Ei. Then,
computing the conditional probability distribution in Algorithm 1 based on πi, it
follows that the resulting Markov chain Xn converges to its (unique) stationary
distribution πi.

Proof. The proof consists of two parts. We start by showing that πi is a sta-
tionary distribution for the Markov chain Xn. The next part of the proof then
shows that Xn is irreducible; since Xn is defined on a finite family, by standard
results from Markov chain theory (see Sections 3.3 and 3.4 in Brémaud, 1999, for
example) it then follows that Xn converges to a unique stationary distribution
which, by the first part of the proof, must be equal to πi.

The transition matrix P of the sequence Xn is given by

P = P1P2 . . .PJ ,

where each Pl is the transition matrix of the l-th component of Xn. To show
that πi is a stationary distribution of Xn, we must have

πT
i P = πT

i .

We claim that it is enough to show that

πT
i Pl = πT

i , (5.3)

for each l = 1, . . . , J ; that is, if the transition matrix for each component pre-
serves the distribution πi, then the matrix P preserves πi as well. To see this,
we can repeatedly apply (5.3) as follows:

πT
i P = πT

i P1P2 . . .PJ

=
(
πT
i P1

)
P2 . . .PJ

= πT
i P2 . . .PJ by (5.3)

...

= πT
i PJ

= πT
i by (5.3).

Thus, the main result follows if we can show that (5.3) holds. To that end, let
U, V ∈ Ei. For each transition matrix Pl, we can define the probability of a
jump from U to V as

pUV,l =


πi(V )∑

W∼lV
πi(W )

, if U ∼l V

0, otherwise.
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We then have ∑
U∈Ei

πi(U)pUV,l =
∑

U∼lV

πi(U)pUV,l

=
∑

U∼lV

πi(U)
πi(V )∑

W∼lV
πi(W )

= πi(V )

∑
U∼lV

πi(U)∑
W∼lV

πi(W )

= πi(V ).

Thus, for each component, the update Pl preserves the distribution πi, and it
follows that πi is a stationary distribution of Xn.

We next show that Xn is irreducible. Let A,B ∈ Ei. By Lemma 5.3, there
exists a path A = D0, . . . , Dm = B in Ei connecting A and B. Suppose we can
show that for any j = 0, . . . ,m−1 and n ∈ N0 we have πi (Xn+1 = Dj+1 |Xn = Dj) >
0. It would then follow that

πi (Xn+m = B |Xn = A) = πi (Xn+m = Dm |Xn = D0)

≥
m−1∏
j=0

πi (Xn+j+1 = Dj+1 |Xn+j = Dj)

> 0,

thus proving that there is a non-zero probability of transitioning from A to B.
It remains to show that for any j = 0, . . . ,m−1 there is a non-zero probabil-

ity of transitioning from Dj to Dj+1 after one time step. Let {q} = Dj∆Dj+1,

and let Xn be the current state of the Markov chain. Assume that x
(k)
n is the

component of Xn containing the variable representing q. We have

πi (Xn+1 = Dj+1 |Xn = Dj) =

J−1∏
l=0

p̃l,

where

p̃l =


pDjDj ,l if l < k

pDjDj+1,l if l = k

pDj+1Dj+1,l if l > k.

Notice that for any l < k we have

p̃l =
πi (Dj)∑

W∼lDj
πi (W )

> 0,

where the inequality follows from the fact that Dj ∈ Ei. Similarly, for l ≥ k we
have

p̃l =
πi (Dj+1)∑

W∼lDj+1
πi (W )

> 0,
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where the inequality follows from the fact that Dj+1 ∈ Ei. Thus, we have shown
that

J−1∏
l=0

p̃l > 0,

from which the claimed result follows.

For our problem of estimating the size of a knowledge space, we assume that
πi is the uniform distribution on the sets in Ei, for any i ≥ 0; however, the above
result is more general and holds for any probability distribution on Ei, at least
in theory (in practice, the Gibbs sampler may run into convergence issues if the
distribution is highly non-uniform). Also, note that the above result makes it
straightforward to sample knowledge states from a knowledge space—we simply
need to run the Gibbs sampler with a uniform distribution on E0.

6 Bounds on the size of an ordinal knowledge
space

Given a knowledge space K with |Q| = n, there are 2n possible combinations of
items. Taking n = 300, for example, gives a total possible number of knowledge
states on the order of 1090. In the specific case of an ordinal knowledge space,
we can make use of the techniques developed in Eppstein (2013a,b) to derive
upper and lower bounds for the number of knowledge states.

Following the procedure outlined in Eppstein (2013b), we can represent an
ordinal knowledge space K as a bipartite graph, which then allows us to use
the Hopcroft-Karp algorithm (Hopcroft and Karp, 1973) to efficiently compute
a minimal chain covering C of Q. Let J be the size of the chain covering. From
Theorem 2.6 we know the largest antichain A has size J as well. Because the
elements of A are not comparable to each other, any possible combination of
elements from A must be contained in at least one knowledge state; thus, as a
lower bound we have |K| ≥ 2J .

Next, we can use C to derive an upper bound on the size of K. Let
C1, C2, . . . , CJ be the J chains in C. Since each Cj is a chain, there are |Cj |+ 1
subsets of Cj that follow the partial order, which means that any knowledge
state must contain one of these |Cj | + 1 subsets. Thus, taking the Cartesian
product of these subsets across all the chains in C, we get an upper bound for
the size of K of the form |K| ≤

∏J
j=1 (|Cj |+ 1).

Regarding the grouping of variables in Algorithm 1, we can use the chain
cover C to define X =

(
x(1), . . . ,x(J)

)
, where each x(j) corresponds to the

items in Cj . Using this representation gives a convenient and efficient way to
implement a Gibbs sampler on an ordinal knowledge space. Furthermore, when
using this form of the Gibbs sampler, the length of the decreasing sequence of
events Ei is typically much smaller—this is because we are starting from the
reduced family of

∏J
i=1(|Ci| + 1) sets, rather than the complete power set of

Q, as we would using a Gibbs sampler with one item in each component. Our
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next result shows that the requirements of Theorem 5.4 are satisfied using this
representation.

Lemma 6.1. Let K be a well-graded knowledge space with a chain cover C =
{C1, . . . , CJ}. Define E to be the Cartesian product of the subsets of the chains
in C. Then, E is a learning smooth family.

Proof. Let A,B ∈ E, where A ⊆ B. Let q11 , . . . , q
1
n1

be the items in C1∩ (B \A),
with q1j < q1j+1, j = 1, . . . , n1−1. Then, it follows that A1

j = A∪{q11 , . . . , q1j } ∈ E,
for any j = 1, . . . , n1.

Next, let q21 , . . . , q
2
n2

be the items in C2 ∩ (B \ A1
n1

), with q2j < q2j+1, j =

1, . . . , n2 − 1. Then, A2
j = A1

n1
∪ {q21 , . . . , q2j } ∈ E, for any j = 1, . . . , n2.

Continuing this process J − 2 more times, we get

A ⊂ A1
1 ⊂ · · · ⊂ A1

n1
⊂ A2

1 ⊂ · · · ⊂ AM
nJ−1 ⊂ A

M
nJ

= B,

where each consecutive pair of sets in the sequence differs by one item. Thus,
we have constructed a tight path between A and B, and the claimed result
follows.

7 Algorithm for estimating the size of a knowl-
edge space

Our algorithm for estimating the size of a knowledge space is a modified version
of the subset simulation procedure described in Au and Beck (2001). The first
change is that, as mentioned previously, we use the Gibbs sampler to generate
our Markov chains, rather than the modified Metropolis algorithm given in
Au and Beck (2001). In addition to performing well in all of our numerical
experiments, the Gibbs sampler avoids technical complications caused by the
dependence between the groups of items that make up the components of our
Markov chain states.

The second change concerns the way in which we start our Markov chain
samples in each Ei, and it is specifically motivated by the connected properties
of the sets that we sample from. As shown in Lemma 5.3, any sets A,B ∈ Ei are
connected by a path of sets in Ei; furthermore, based on the proof of Lemma 5.3,
it seems reasonable to assume that in most cases there are numerous possible
paths from A to B. The algorithm as described in Au and Beck (2001) is
more general and tries to account for the possibility that the state-space of the
Markov chain consists of multiple disconnected regions; thus, it estimates each
conditional probability by using several Markov chains started from different
points in the state-space. The intuition is that, by having multiple starting
points, the Markov chains are able to “explore” the entire space effectively. In
our experiments, however, we have the advantage of dealing with a specific type
of state-space, and we obtain better results by using a single Markov chain to
estimate each conditional probability. We hypothesize that this is due to the
fact that each Ei is (as mentioned previously) relatively well-connected. (Also,
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see 1.11.3 in Geyer, 2011, for a more general discussion of the possible benefits
of using one long simulation run over multiple shorter runs.)

Given a set of samples X1, . . . ,XM drawn from Ei, for any j < i we can
estimate the conditional probability of a set from Ej by

P (Ej |Ei) = Pj,i ≈ p̂j,i =
1

M

M∑
m=1

IEj (Xm) , (7.1)

where IEj is an indicator function that is one if a set is in Ej and zero otherwise.
To simplify notation, when the conditioning set is clear, we drop the second
index and refer to the above as Pj and p̂j . Let K be an ordinal knowledge
space, and let C be a chain cover of the items in Q. Define E to be the Cartesian
product of the chains in C. Combining (3.1) and (7.1), we can estimate the
proportion of sets in E that are knowledge states in K as

P (K |E) = P (K) ≈ p̂ =

N−1∏
n=1

p̂in,in−1 . (7.2)

That is, p̂ is an estimate of the probability that a randomly chosen set from E is
a knowledge state in K. Next, let 0 < α0 < 1 be our chosen target conditional
probability, a value that at each Ei determines the next level in the sequence.
Then, our implementation of an algorithm for estimating the size of a knowledge
space proceeds as follows.
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Algorithm 2 Approximately counting knowledge states

Inputs:
E, the Cartesian product of the chains in C; M , the number of samples to
generate for each conditional probability estimate; α0, the target conditional
probability

Initialization:
Set i0 = |Q|
Generate a sequence of M samples X1,i0 , . . . ,XM,i0 from Ei0 = E by sampling
randomly from E (or, equivalently, this can be done by using Algorithm 1 and
an arbitrary starting set in E)
Set j = i0 − 1
while j > 1 and p̂j−1,i0 > α0 do

j = j − 1
end while
Set k = 1 and ik = j

Iterations:
while ik > 0 do

Pick X0,ik at random from
{
X1,ik−1

, . . . ,XM,ik−1

}
∩ Eik

Starting from X0,ik , draw M samples X1,ik , . . . ,XM,ik from Eik using
Algorithm 1

Set j = ik − 1
while j > 1 and p̂j−1,ik > α0 do

j = j − 1
end while
Set k = k + 1 and ik = j

end while

Output:
Estimated number of knowledge states given by

|E| ∗
k−1∏
n=1

p̂in,in−1

Regarding the choice of probability threshold α0, this was investigated in
some detail in Zuev et al. (2012), where it was suggested that, for all practical
purposes, values of α0 such that 0.1 ≤ α0 ≤ 0.3 give comparable results. Our
initial numerical experiments supported this claim, where we did not observe any
meaningful difference in accuracy between the threshold values in this range.
Thus, since a lower threshold results in having to estimate fewer conditional
probabilities, we use a value of α0 = 0.1 in our simulations in Section 8.

To get a sense of how much variability there is with the above procedure, we
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can use the techniques from Au and Beck (2001) to derive an estimate for the
standard error of the sample statistic p̂ from (7.2).1 We start by analyzing the
variance of the probability estimate p̂in from (7.1). To that end, observe that
the indicator function of Ein , given by IEin

, is a Bernoulli random variable with
mean Pin when applied to a sequence of samples X1, . . . ,XM from Ein−1

; thus,
it has a variance of Pin(1−Pin). Using the fact that X1, . . . ,XM is a stationary
sequence, we can then directly compute the variance of p̂in as

E [p̂in − Pin ]
2

=
1

M2

M∑
j=1

M∑
k=1

E
[(
IEin

(Xj)− Pin

) (
IEin

(Xk)− Pin

)]

=
E
[(
IEin

(X1)− Pin

)2]
M

+
2

M2

N∑
m=2

(M −m)E
[(
IEin

(X1)− Pin

) (
IEin

(Xm)− Pin

)]
=
Pin(1− Pin)

M

+
2

M2

N∑
m=2

(M −m)E
[(
IEin

(X1)− Pin

) (
IEin

(Xm)− Pin

)]
=
Pin(1− Pin)

M

(
1 +

2

M

M∑
m=2

(M −m) ·R(m− 1)

)
,

where

R(t) =
E
[(
IEin

(X1)− Pin

) (
IEin

(Xt+1)− Pin

)]
Pin(1− Pin)

(7.3)

is the autocorrelation function of the sequence IEin
(X1), . . . , IEin

(XM ). Thus,
the conditional probability estimate p̂in has a standard error of

σp̂in
=

√√√√Pin(1− Pin)

M

(
1 +

2

M

M∑
m=2

(M −m) ·R(m− 1)

)
. (7.4)

Assuming further that we have independence across the samples from all the
Ei’s—that is, for any j 6= i the samples in Ei are independent of the samples in
Ej—it was shown in Au and Beck (2001) that the standard error for the product
of the estimated conditional probabilities is given by

σp̂ = P (K)

√√√√k−1∑
n=1

σ2
p̂in

Pin

. (7.5)

1The work of Au and Beck (2001) focused on estimates for the coefficient of variation.
However, as the coefficient of variation is simply the ratio of the standard error to the mean,
it is straightforward to adapt their results to the specific case of standard errors.
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Furthermore, Au and Beck (2001) provided evidence that (7.5) can give a good
approximation to the true standard error even when the estimators p̂in are
correlated. In the following section we run simulations to verify the validity of
(7.5) for our specific numerical experiments.

8 Applications

For our numerical experiments2 we use an ordinal knowledge space K composed
of 300 items (i.e., |Q|=300) as our starting point. Based on the statistics given
in Table 1 of Cosyn et al. (2021), this number of items is similar to that of
several knowledge spaces used in an actual implementation of KST. Of the
3002 = 90, 000 possible pairs of items, 18,284 of these pairs are comparable
under the partial order given by K. These pairs, along with the order of the
items in each pair, were for the most part chosen at random. In the cases when
they weren’t chosen at random, the pairs of items were ordered to ensure that
the resulting relation is a proper partial order—i.e., that the relation is reflexive,
antisymmetric, and transitive.

Our first example uses the restriction of K to a subset of 100 items, Q̃,
for which we can explicitly count the number of knowledge states—this can
be efficiently done, for example, by using the unfolding algorithm outlined in
Eppstein (2013a). Formally, let K̃ be the ordinal knowledge space resulting

from intersecting each knowledge state in K with the 100 items in Q̃. After
applying this process, there are 2191 distinct pairs (out of a possible 10,000)

in the partial order given by K̃, and for |K̃| we obtain an explicit value on

the order of 6.1969 × 1011. We next generate a minimal chain covering C̃ of
K̃ using the procedure described in Eppstein (2013b); for this part, we use the

implementation of the Hopcroft-Karp algorithm from Eppstein (2002). Since C̃

contains 32 chains, we get a lower bound of 232 ≈ 4.29× 109 for the number of
knowledge states. Letting C̃1, . . . , C̃32 be the chains in C̃, our upper bound is

32∏
i=1

(
|C̃i|+ 1

)
≈ 2.9490× 1018.

Notice that this upper bound is already a significant improvement on the total
number of possible subsets of Q̃, which is given by 2100 ≈ 1.2677× 1030.

We next apply Algorithm 2 with E equal to the Cartesian product of the
chains in C̃. Using M = 107 samples to estimate each conditional probability
gives an overall estimate of

P (K̃) ≈ p̂ =

8∏
n=1

p̂in

≈ 2.1056× 10−7. (8.1)

2The code for running these experiments is available at https://github.com/jmatayoshi/
state-sampler.
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Our estimate for the number of knowledge states in K̃ is then given by

|E| ∗ p̂ ≈ 2.9490× 1018 ∗ 2.1056× 10−7

≈ 6.2094× 1011. (8.2)

Note that the absolute difference between the estimated value in (8.2) and the
explicitly computed size of 6.1969×1011 is on the order of 1.25×109, a seemingly
large number. However, in relative terms the difference is only about 0.2% of
the actual value, and we submit that this level of accuracy would be sufficient
for most practical purposes.

Table 1 gives further information on the computations for (8.1). Specifically,
the table contains the estimated conditional probabilities based on the different
families Ei that appear in the sampling procedure. For example, the first row
shows the estimated probability of sampling a set from E12 given that the sets
are being sampled from E100 (where E100 = E is the Cartesian product of the

chains in C̃); we can see that about 10% of the sampled sets from E100 are
also contained in E12. Then, as another example, the last row shows that
when sampling sets from E1, slightly under 8% of the time the obtained set is
actually a knowledge state from K̃ (as E0 = K̃). Taking the product of all these
conditional probabilities, and then multiplying the result by the size of E, we
arrive at our estimate (8.2).

Conditional
Estimate

probability

P (E12 | E100) 0.101622

P (E8 | E12) 0.119788

P (E6 | E8) 0.209713

P (E4 | E6) 0.126765

P (E3 | E4) 0.273108

P (E2 | E3) 0.211882

P (E1 | E2) 0.146924

P (E0 | E1) 0.076529

Table 1: Conditional probability estimates for K̃ using M = 107 samples.

Our next analysis is an attempt to quantify the uncertainty in our probability
estimate (8.1). As a start, to get an idea of the amount of correlation there is
between our generated samples, we can look at the autocorrelation values for
the indicator functions of the Ei’s; these values correspond to the output of the
autocorrelation function R(t), defined in (7.3). As shown in Figure 1, at a time
lag of one the autocorrelation is either close to zero or negative; in the latter
case, as the lag increases the autocorrelation quickly converges to zero.
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Figure 1: Autocorrelation plots for three different indicator functions using the
subdomain of 100 items, Q̃. Two of the examples initially show a negative
correlation, with the values then converging towards zero as the lag increases.
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Our next step is to compute σp̂, the standard error of our estimate (8.1), by
using formulas (7.4) and (7.5). The results in Figure 1 suggest there is some
degree of correlation for nearby samples, but very little for samples further
away from each other. Thus, in Figure 2 we compute the values of σp̂ under
two scenarios. In the first scenario—represented by the solid (orange) line—we
assume there is no correlation between the samples generated within each Ei

(which means the summation in (7.4) is zero). Then, in the second scenario—
shown by the dashed (green) line—we compute (7.4) with the values of R(t)
estimated from the samples used to compute (8.1). In this latter case, we set
R(t) = 0 for any t > 100; the decreasing autocorrelation values in Figure 1
suggest that this is a reasonable approximation. To evaluate the accuracy of
our computed values of σp̂, we use the following procedure. For a given value
of M , we run Algorithm 2 to estimate the conditional probabilities in Table 1,
using M samples for each estimate; based on these conditional probabilities, we
compute p̂ using (7.2). We then repeat this procedure until we have a sample
of 10,000 different realizations of p̂ for which we can compute the standard
deviation—the results are given by the (blue) dots in Figure 2 for various values
of M . As shown, the results from the simulations are aligned very closely with
the curve using the estimated autocorrelation from the data. Thus, as suggested
in Au and Beck (2001), (7.5) appears to be a reasonable estimate of the standard
error when the autocorrelation among the samples is taken into account.

Now that we have validated the accuracy of our formula for computing the
standard errors, we can use it to derive a confidence interval for our probability
estimate. An inspection of the sampling distributions of the simulations in
Figure 2 shows they are approximately normally distributed; thus, we compute
our confidence intervals using a normal approximation interval. To test the
validity of this procedure, we use the following approach. As discussed in the
previous paragraph, for a given value of M we have 10,000 different estimates
of p̂. For each estimate we compute the confidence intervals for three different
confidence levels and check whether the true value of P (K̃) is contained in the
intervals. Based on the results, we can then check the coverage probabilities
of these intervals over the 10,000 different simulation runs; that is, for each
confidence level we compute the proportion of the time that the true value is
contained in the associated interval.

The results are shown in Figure 8. While the actual coverage probabilities
are slightly below the nominal coverage probabilities for the lower sample sizes—
i.e., the true value is contained in the confidence intervals less than expected
for the smaller sample sizes—the performance is better with the larger sample
sizes. For example, focusing on the 95% confidence intervals, for any sample
size larger than 25,000 the smallest coverage probability is 0.944, just slightly
below the nominal coverage probability of 0.95. Based on these results, as well
as the fact that our estimate (8.1) uses a sample size of 107—much larger than
any of the sample sizes in Figure 8—it seems reasonable to use this procedure
to generate a confidence interval around the point estimate (8.1).

Taking all of this into account, we compute a 95% confidence interval for
our estimate (8.1) using a normal approximation interval and σp̂, with the au-
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Figure 2: Estimated standard error as a function of the sample size of the
conditional probability estimates, p̂in , using the subdomain of 100 items, Q̃.
The (blue) dots are estimates from 10,000 independent runs of Algorithm 2 at
each of the different sample sizes. Note that using the autocorrelation estimated
from the data results in a close match between the standard deviations of the
repeated simulations (blue dots) and the standard errors from (7.5) (dashed
green line).
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Figure 3: Coverage probabilities for various confidence intervals computed from
10,000 independent runs of Algorithm 2 at each of the different sample sizes.
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tocorrelation function estimated from the data. After obtaining this interval,
we multiply it by |Ẽ| to obtain the following 95% confidence interval for the size

of K̃:
(6.1869× 1011, 6.2319× 1011).

We next turn our attention to the full domain of 300 items. The chain
covering C of the items in Q contains 65 chains, which gives a lower bound of
265 ≈ 3.6893×1019 for the number of knowledge states in K. Letting C1, . . . C65

be the chains in C, our upper bound is

65∏
i=1

(|Ci|+ 1) ≈ 2.8606× 1044.

Using one simulation run with M = 107 gives estimates for the 22 conditional
probabilities in Table 2; based on these conditional probabilities, our estimate
for the overall probability p̂ is

P (K) ≈ p̂ =

22∏
n=1

p̂in

≈ 6.2627× 10−19. (8.3)

Finally, our resulting estimate for the total number of knowledge states in K is
given by

|E| ∗ p̂ ≈ 2.8606× 1044 ∗ 6.2627× 10−19

≈ 1.7915× 1026. (8.4)

We next quantify the uncertainty in this estimate by computing a confidence
interval. As before, we begin by examining the indicator function autocorrela-
tion values for three different examples; the results are shown in Figure 4. Note
that in two of these examples the correlation is initially negative, with the val-
ues then converging towards zero as the lag increases; overall, this seems to
indicate some level of correlation in the sampled sets. Using (7.4), (7.5) and the
conditional probabilities in Table 2, in Figure 5 we show the estimated standard
errors under the assumption of no correlation between the samples within each
Ei—represented by the solid (orange) line—and with the values of R(t) esti-
mated from the samples used to compute (8.3)—shown by the dashed (green)
line. These estimates of the standard error are then compared to the standard
deviations from 1,000 simulations each at various values of M , shown by the
(blue) dots.3 As can be seen in the plots, the actual standard deviations from
the simulation values are roughly equivalent to the standard errors computed by
using the autocorrelation estimated from the data. Thus, as with our previous

3Note that while the simulations in Figure 2 used a sample size of 10,000 to compute each
standard deviation, due to the extra computational demands of the larger knowledge space,
K, a smaller sample size of 1,000 is used for the results in Figure 5.
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Figure 4: Autocorrelation plots for three different indicator functions using the
full domain of 300 items, Q. As in Figure 1, two of the examples initially show
a negative correlation, with the values then converging towards zero as the lag
increases.
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Figure 5: Estimated standard error as a function of the sample size of the
conditional probability estimates, p̂in , using the full domain of 300 items, Q.
The (blue) dots are estimates from 1,000 independent runs of Algorithm 2 at
each of the different sample sizes. Note that using the autocorrelation estimated
from the data results in a close match between the standard deviations of the
repeated simulations (blue dots) and the standard errors from (7.5) (dashed
green line).
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Conditional
Estimate

probability

P (E59 | E300) 0.112414

P (E47 | E59) 0.101169

P (E39 | E47) 0.106080

P (E33 | E39) 0.114070

P (E28 | E33) 0.109741

P (E24 | E28) 0.123257

P (E21 | E24) 0.165288

P (E18 | E21) 0.130088

P (E16 | E18) 0.219147

P (E14 | E16) 0.188575

P (E12 | E14) 0.157812

P (E10 | E12) 0.127093

P (E9 | E10) 0.323435

P (E8 | E9) 0.299725

P (E7 | E8) 0.274500

P (E6 | E7) 0.247633

P (E5 | E6) 0.219288

P (E4 | E5) 0.188764

P (E3 | E4) 0.156212

P (E2 | E3) 0.121349

P (E1 | E2) 0.083901

P (E0 | E1) 0.043514

Table 2: Conditional probability estimates for K using M = 107 samples.

experiments on the restricted knowledge space K̃, it appears that we can accu-
rately estimate σp̂—i.e., the standard error in our estimate (8.3)—using (7.5)
with R(t) estimated from the data. Once again using a normal approximation
interval, we first construct a 95% confidence interval around our probability esti-
mate (8.3); we then multiply this resulting interval by |E| to obtain the following
95% confidence interval for the estimated size of K:

(1.7804× 1026, 1.8027× 1026).
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9 Discussion

In this work we introduced and evaluated a method for estimating the size of
a knowledge space. This method requires the drawing of samples from specific
families of sets that are related to the knowledge space of interest. To handle
the generation of these samples, we discussed how Markov chain Monte Carlo
methods can be used. In particular, we showed that the Gibbs sampler is well-
suited to this problem, especially in the case of an ordinal knowledge space,
where it can take advantage of the partial order properties of the space to
efficiently generate sample sets. Furthermore, these same sampling techniques
can also be used to sample states directly from the knowledge space itself.

As an application of these techniques, we computed an estimate for the size
of a (relatively) small knowledge space for which we could directly count the
number of knowledge states. We then performed an analysis of the uncertainty
around this estimate, where simulation results suggested that the proposed pro-
cedure for deriving standard errors and confidence intervals is valid. Based
on these results, we then computed an estimate of the size of a much larger
knowledge space, along with the associated confidence interval, where a direct
counting of the knowledge states is not feasible.

In the case of this larger knowledge space composed of 300 items, we esti-
mated the number of knowledge states to be on the order of 1.7915× 1026. As
discussed at the beginning of Section 8, the number of items in this knowledge
space is a reasonable approximation of many knowledge spaces used in prac-
tical applications—as such, it is worth reflecting on the scale of the numbers
involved. Given that the the maximum number of possible knowledge states on
a set of 300 items is 2300 ≈ 2.0370× 1090, this estimated number of knowledge
states represents an exceedingly small proportion of the maximum possible, with
this proportion being on the order of 10−64. However, in absolute terms it is
a staggeringly large number, and it thus emphasizes the difficulties inherent
in adaptive assessment procedures that attempt to identify a small set of very
likely knowledge states (see, for example, Matayoshi et al., 2021, for further
background on these issues). Furthermore, examples exist of knowledge spaces
defined on sets of items as large as 1500 or more; applying the techniques in
this paper to knowledge spaces containing such a large number of items, our
estimates for the number of knowledge states have been as high as 10140.

Knowing the scale of the numbers involved could help guide further develop-
ment of adaptive assessments in KST. For example, in assessments that involve
large knowledge spaces, it may no longer be desirable to focus on precisely iden-
tifying the entire knowledge state of a student—instead, perhaps the goal could
be to focus on certain subsets of the domain of knowledge that contain the
most important and core topics. Related to this, some previous algorithms for
constructing knowledge spaces have been motivated by the desire to identify a
knowledge space that is as small as possible (see, for example, Section 11 in
Doignon and Falmagne, 2016); as mentioned in the introduction, all else being
equal a smaller knowledge space makes it easier to run an adaptive assessment.
However, in light of the estimated sizes seen in this work, such an objective may
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not be as important as previously thought. That is, with a knowledge space
containing roughly 1026 (or even more) knowledge states, reducing this num-
ber by a half, a tenth, or even a thousandth, would likely have little practical
effect on an adaptive assessment. Thus, with insights such as these, hopefully
the results of this study can be of some use to researchers working in KST, on
adaptive assessments, or in other related areas.
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