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ABSTRACT

Many modern adaptive learning and intelligent tutoring sys-
tems implement the principles of mastery learning, where a
student must demonstrate mastery of core prerequisite ma-
terial before working on subsequent content within the sys-
tem. Typically in such cases, a set of rules or algorithms
is used to determine if a student has sufficiently mastered
the concepts in a topic. In our previous work, we used a
quasi-experimental design to investigate the relationship be-
tween two different mastery learning thresholds and the for-
getting of the learned material. As a follow-up to this initial
study, in the present work we analyze the results from a
randomized experiment—or, A/B test—directly comparing
these two mastery learning thresholds. These latest results
seemingly agree with those from our initial study, giving ev-
idence for the validity of the conclusions from our original
quasi-experiment. In particular, we find that although stu-
dents who learn with the higher mastery threshold are less
likely to forget the learned knowledge, over time this dif-
ference decreases. Additionally, we build on these analyses
by looking at how the relationships between the mastery
thresholds change based on the amount of struggle students
experience while learning.

1. INTRODUCTION

Within a mastery learning framework, students must demon-
strate proficiency with the core prerequisite material before
moving on to learn subsequent content. First articulated by
Benjamin Bloom [8], many modern adaptive learning and
intelligent tutoring systems implement the principles of mas-
tery learning. Typically in these systems, a set of rules or
algorithms determines if a student has sufficiently grasped
the core material in a topic, with perhaps the most notewor-

thy being Bayesian knowledge tracing (BKT) and its many
derivatives [6, 11, 36, 58]. Another common set of mod-
els is the factor analysis family—examples of which include
Learning Factors Analysis (LFA) [9] and Performance Fac-
tors Analysis (PFA) [38]—while simpler rules and heuristics,
such as requiring students to correctly answer a certain num-
ber of questions in a row [24], are also used.

A closely related and relevant subject—both within the ed-
ucation field and more broadly as part of psychology and
cognitive science—is that of knowledge retention and for-
getting. Specifically, the Ebbinghaus forgetting curve [4, 14]
is a well-known model of how knowledge decays over time.
Many studies have examined these curves in a variety of
settings, including laboratory experiments [18, 34, 35, 46],
classrooms [2, 7, 17], and adaptive learning and intelligent
tutoring systems [29, 30, 52, 55, 56]. Furthermore, other
studies have shown that accounting for forgetting [10, 27,
39, 53] and having personalized interventions and review
schedules [26, 37, 45, 48, 57] can be beneficial for learning
systems.

In the current study, we examine the relationship between
different mastery thresholds and the long-term retention of
the learned material. This is a continuation of the work in
[28], where we performed a quasi-experimental analysis com-
paring two different mastery thresholds used in the ALEKS
adaptive learning system. In the current work, we further
investigate the differences between the mastery thresholds
by analyzing the results from a randomized experiment (or,
A/B test). This experiment has multiple objectives. First,
given the inherent limitations of quasi-experimental studies,
we want to see if our previous results are consistent with
those from a fully randomized experiment—such verification
would give us more confidence in instituting changes to the
way in which these thresholds are used within the ALEKS
system. Additionally, such a result would be of interest from
a methodological standpoint, as it would demonstrate the
utility of the techniques used in [28]. Finally, we would like
to deepen our understanding by investigating how these re-
lationships change based on the amount of struggle students
experience while learning.



The outline of the paper is as follows. We start by giving a
brief background of the ALEKS system in Section 2. Next,
in Section 3 we summarize the results from [28], and we
then follow with a description of our experimental setup in
Section 4. After presenting our first analysis in Section 5,
where we compare the experimental data with that from
the original study in [28], in Section 6 we then look at how
the findings change based on the amount of struggle expe-
rienced by students when learning a topic. Lastly, we finish
with a discussion of these latest results and their potential
implications for learning systems.

2. BACKGROUND

In this section, we briefly discuss the aspects of the ALEKS
system that are relevant for this study. To start, within the
system a topic is a problem type that covers a discrete unit
of an academic course. Each topic contains many exam-
ples that are known as instances, with these instances being
carefully chosen so that they are equal in difficulty and cover
similar content. Figure 1 contains a screen capture of an in-
stance of the math topic “Introduction to solving an equation
with parentheses.” Many prerequisite relationships exist be-
tween the topics in an ALEKS course. Specifically, we say
that topic x is a prerequisite for topic y if x contains core
material that must be learned before moving on to learn the
material in y.

In order to ensure students are learning the most appropri-
ate topics, an initial assessment is given at the start of an
ALEKS course, with the purpose of this assessment being
to measure the student’s incoming knowledge. This assess-
ment is adaptive, in that it asks the student questions based
on the responses to earlier questions in the assessment. Af-
ter each question, for each topic in the course the system
estimates the probability that the student can answer the
topic correctly [32, 33]. Then, at the very end of the as-
sessment, based on both these probability estimates and the
prerequisite relationships between the topics, the ALEKS
system partitions the topics in the course into the following
categories.

e Topics that are most likely known
e Topics that are most likely unknown

e All remaining topics (uncertain)

At this point, the student begins working in the ALEKS
learning mode. Here, a student is presented a topic that
the system believes they are ready to learn. Additionally,
the student can access a graphical list with additional topics
that they are also ready to learn—however, students tend to
work on the specific topic the system presents to them. The
topics that are available to the student are from the unknown
and uncertain categories, and they work on these one at a
time, until they have either demonstrated a certain amount
of mastery of the topic, or—in the event the student strug-
gles to demonstrate this mastery—the system suggests they
take a break and work on something else. To demonstrate
mastery, two different thresholds—or rules—are used. The
high mastery threshold is used for the unknown topics, while
the low mastery threshold is used for the uncertain topics
(we give precise definitions of these thresholds shortly). The
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Figure 1: Screen capture of an ALEKS topic titled “Intro-
duction to solving an equation with parentheses.”

idea is that, as the system is not sure if the uncertain top-
ics are actually known by the student, a lower threshold is
required for demonstrating mastery of these topics.

During the learning of a topic, three actions can be taken
by a student: submitting a correct answer, submitting a
wrong answer, or viewing an explanation page with a worked
solution to the instance. For a given topic, we define the
learning sequence to be the sequence of actions taken by the
student while working on the topic. A learning sequence for
a topic starts with a score of 0. When the student first works
on a topic, an example instance with a worked explanation is
presented. Subsequent to this, the student receives another
instance for actual practice. Whenever the student receives
a new instance they can try to answer it, or they can view the
explanation page. A student is always given a new instance
after a correct answer, viewing an explanation, or submitting
two consecutive wrong answers.” Based on the student’s
action, the score is updated using the following rules.

(1) A single correct answer increases the score by 1; how-
ever, if the correct answer immediately follows a pre-
vious correct answer, the score increases by 2 instead
of 1.

(2) An incorrect answer decreases the score by 1 (unless
the score is already at 0, or it is the student’s sec-
ond attempt at the question following a first wrong
answer).

(3) Viewing an explanation does not change the score.
However, it does affect rule (1)—for example, if a stu-
dent answers correctly immediately after viewing an
explanation, the score increases by only 1 point, rather
than 2, regardless of the student’s previous responses.

If a topic is classified as unknown after the initial assessment,
it uses the aforementioned high mastery threshold, in which
case the student must demonstrate mastery by achieving a
score of 5. For topics that are classified as uncertain after the
initial assessment, a lower score of 3 is required to achieve
mastery—this is the low mastery threshold. Interestingly

L After a first wrong answer, the student gets a second chance
to answer. If the second answer is again wrong, an explana-
tion of the current instance is shown to the student before
they are presented with a new instance to work on.



enough, this mastery threshold, while arguably relatively
straightforward, has been shown to have similarities with
more sophisticated models, such as BKT [13]. Lastly, in the
event that a student gives five consecutive incorrect answers,
this is considered to be a failed learning attempt, and the
student is gently prompted to try another topic.

To test the retention of the topics after they are mastered, we
make use of the ALEKS progress assessment. The progress
assessment is a test given at regular intervals when a student
has completed a certain amount of learning in the system.
The purpose of the progress assessment is to focus on the
student’s recent learning, where it functions both as a way
of confirming any recently learned knowledge, as well as a
mechanism for spaced practice and retrieval practice. As
spaced practice [22, 54] and retrieval practice [5, 23, 40, 41,
42] have been shown to help with the retention of knowl-
edge, the progress assessment plays a key role within the
ALEKS system [27, 31]. In order to evaluate student knowl-
edge retention, we can look to see how often students answer
correctly to previously learned topics when they appear as
an extra problem during the progress assessment. The ex-
tra problem is chosen by randomly selecting a topic, with
this topic then being presented to the student as a regular
question—however, the response to the question does not
affect the results of the assessment. Instead, the data col-
lected from these extra problems are used to evaluate and
improve the ALEKS assessment. Thus, we define the re-
tention rate to be the proportion of the time that students
answer the extra problem correctly after having previously
mastered the topic in the ALEKS system.

3. PREVIOUS STUDY: ADJUSTING FOR SE-

LECTION BIAS

A factor complicating our analysis is that there exists a se-
lection bias with the assignment of the different mastery
thresholds. That is, because of the way in which the thresh-
olds are assigned, topics using the high mastery threshold
have lower probability estimates in comparison to topics that
use the low mastery threshold—in general, this means that
topics using the high mastery threshold tend to be more dif-
ficult. We can see this by using the data from our original
study in [28] to look at the forgetting curves associated to
each of the two categories. To generate these curves, we first
find all examples where a topic was mastered before appear-
ing as a question in the first progress assessment the student
receives in the ALEKS system. Then, for each data point we
compute the time in days between the learning of the topic
and its appearance on the progress assessment. Finally, we
group the data points into bins of width one day, compute
the correct answer rate within each bin, and plot the results.

From the forgetting curves in Figure 2 we can see that, over-
all, the correct rates for the topics with the low mastery
threshold are noticeably higher. While this seems slightly
confusing at first glance, as discussed in the previous para-
graph, this is a byproduct of a selection bias. That is, the
topics using the low mastery threshold, being from the un-
certain category, are the ones for which the ALEKS assess-
ment was not confident enough to classify as either known
or unknown by the student—as such, it stands to reason
that some proportion of these topics are likely known by the
students, or that, at the very least, these topics tend to be
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Figure 2: Forgetting curves comparing high mastery and low
mastery topics based on the uncertain and unknown cate-
gories.

easier for the students to learn. In comparison, the topics
that are classified as unknown by the ALEKS system are
typically more difficult for the students.

Thus, while we wanted to investigate the relationship be-
tween these different amounts of practice and the retention
of knowledge, due to the above issue, we did not have an ac-
curate estimate of how large the differences could be. As
such, our first step was to perform a quasi-experimental
analysis—specifically, in [28] we used a regression disconti-
nuity design (RDD) [49], a popular method that frequently
appears in fields such as political science [15] and economet-
rics [3], to analyze the differences in the mastery thresholds.

To run the RDD analysis, we leveraged the fact that a prob-
ability cutoff is employed by the ALEKS assessment to de-
cide which mastery threshold a topic should use. The topics
above this threshold are classified in the uncertain category
and use the low mastery threshold; in comparison, topics
below the threshold are classified in the unknown category
and use the high mastery threshold. We then compared top-
ics with probabilities close to the cutoff, in an attempt to
measure the differences in retention, if any, between topics
learned with the two different mastery thresholds. The re-
sults of this analysis—which are reproduced and discussed
later in Section 5—suggested that the differences between
the two mastery learning thresholds are not overly large.

Given that our earlier study was observational, there was
some level of concern that the results might not be com-
pletely valid—for example, perhaps there were additional
confounding variables that we failed to control for, or maybe
the assumptions of the RDD were not completely satisfied.
Furthermore, even if the RDD was completely valid, a basic
limitation of the RDD procedure is that we only looked at
topics near the probability cutoff; as such, it is possible the
results could change for a larger range of topics. Thus, for
these reasons, we wanted to follow up on our earlier study
with a fully randomized experiment, the details of which we
describe in the next section.



4. EXPERIMENTAL SETUP

Beginning in April 2023, across all ALEKS products we ran-
domized the assignment of the different mastery thresholds
to a small percentage of our users. Specifically, whenever
a student starts learning a topic, 5% of the time the topic
is randomly assigned the high mastery threshold, another
5% of the time the topic is randomly assigned the low mas-
tery threshold, and the remaining 90% of the time there
is no change—that is, the topic is not part of the experi-
ment, and it instead uses the mastery threshold normally
assigned by the system. Although we do not have access to
demographic information on ALEKS users, overall, the pro-
gram is used at a wide variety of colleges and K—12 schools,
mainly in the U.S., with a total user base of over 7 million
students. ALEKS products cover subjects such as mathe-
matics, chemistry, and statistics, with mathematics being
the most popular, followed by chemistry. Finally, appropri-
ate consents are collected and notice provided to all our users
via our Terms of Service and Privacy Notice, which specify
the use of the anonymized data for product improvements
and research purposes.

To run our analysis, we extract extra problem data from
April 2023 through May 2024. After processing the data to
remove any extra problems that are not part of the exper-
iment, we are left with slightly less than 1.4 million data
points. Next, because we want to include the student’s per-
formance on the initial assessment as one of our control vari-
ables, we remove students for whom we do not have initial
assessment data.? This leaves us with 1,003,696 data points
from 548,028 unique students.

While our modeling procedure and analysis of the data closely
follow the methodology used in [28], for completeness we
next describe this methodology in detail. To compare the
mastery thresholds, we apply a linear regression to esti-
mate the average differences in retention between the mas-
tery threshold groups; as our outcome variable is binary,
this model is sometimes referred to as linear probability
model. While using a generalized linear model—such as lo-
gistic regression—is usually recommended with a binary out-
come variable, we opt for a linear regression here so that it is
easier for us to interpret the coefficients. In theory, the use of
a linear model with a binary outcome variable could lead to
biased estimates; however, arguments have been made that
this bias is typically low. In particular, [3] presents theoreti-
cal and empirical arguments along these lines. An additional
criticism of the linear probability model is that estimating
probability values near zero and one could be problematic,
possibly leading to invalid probability estimates less than
zero or greater than one. Nonetheless, based on previous
works analyzing forgetting in the ALEKS system [12, 28,
29, 30, 31], we expect the probability estimates of a correct
answer to be bounded away from zero and one. That is, as
these topics have been learned relatively recently, students
should have a non-zero probability of answering correctly; at

2While some of these initial assessments may be missing
due to technical issues, the majority of the missing assess-
ments are due to students being transferred between ALEKS
courses—in many such cases, rather than being given an ini-
tial assessment, students are instead given credit for the top-
ics they already demonstrated knowledge of in their previous
course.

Table 1: Categorical variable for time (z¢).

Category Description

1 Less than 7 days after learning

2 Between 7 and 14 days after learning
9 Between 56 and 63 days after learning
10 More than 63 days after learning

the same time, due to careless errors and slips it is unlikely
they can answer correctly all the time, or even a large ma-
jority of the time, as these topics are typically on the edge
of the student’s current knowledge. Finally, as an additional
check on this approach, we also fit logistic regression models
and verify that the results are consistent with those from
the linear regression models.

To handle the fact that students can appear multiple times
in our data, data points associated to the same student are
considered a “group” or “cluster”; and in each of our analyses
we then fit a marginal model using a generalized estimating
equation (GEE) [19, 20, 25]. GEE models are commonly
applied in epidemiological studies and analyses containing
repeated measurements—as such, they are well-suited for
our current work. When using a GEE model, the type of
correlation structure must be specified for the data within
each group. In all cases, we use an exchangeable structure,
which assumes that there is some common dependence be-
tween all the data in a group [19, 20, 47]. All of these models
are fit using the GEE class in the statsmodels [44] Python
library.?

Next, to facilitate comparisons with the work in [28], we use
the same predictor variables, defined as follows.

e z;: 1 for high mastery; 0 for low mastery
e z5: Initial assessment probability estimate

e z3: Initial assessment score = (number of topics clas-
sified as known) / (total number of topics in course)

e x4: Categorical variable encoding ALEKS product

e z5: Categorical variable encoding first action in learn-
ing sequence (correct, incorrect, or explanation)

e z¢: Categorical variable encoding time (in weeks) since
topic was learned (see Table 1)

e z7: Interaction between mastery and time (z1 X )

Our main focus is on the variables x; and xz7, as we are
interested in estimating the average difference in retention
between the groups using the mastery thresholds. The re-
maining predictors are control variables, as we attempt to
adjust for factors such as the estimated difficulty of the topic
(z2), starting knowledge in the course (x3), variation be-
tween students using the different ALEKS products (z4),
and initial amount of struggle experienced by the students
while learning the topics (x5).

3 Alternatively, we could use a mixed-effects model with a
separate random intercept for each student. However, in
the specific case of linear regression, such a formulation is
equivalent to the GEE models we use here [19].



As discussed in [28], the time since the topic was learned
is technically a post-treatment variable—that is, it is mea-
sured after the “treatment” occurs, where the treatment cor-
responds to the successful learning of the topic with the high
mastery threshold. When there is a suspected causal link
between the post-treatment variable and the treatment, the
estimate of the coefficient for the treatment variable could
be biased by including the post-treatment variable in the
regression [1, 43]. Fortunately, because the extra problems
are chosen randomly, we do not believe there is any reason
to suspect a causal link between the time variable and the
type of mastery threshold. Nonetheless, we use the follow-
ing procedure to investigate this issue further. After first
running our analysis including the categorical variable for
time, we then re-run our analysis using the two-step regres-
sion procedure known as the sequential g-estimator [21, 50].
This procedure allows us to make an estimate of 3, the coef-
ficient of the treatment, that adjusts for possible bias from
the inclusion of the post-treatment variable [1, 16, 21, 50,
51]. As with the results in [28], we do not see any substan-
tial differences between the estimates using the sequential
g-estimator and the estimates from our standard regression.
As such, to simplify the exposition, in the rest of this study
we report only the results from the models fit without using
the sequential g-estimator.

5. RESULTS

Using the full set of data from our randomized experiment—
1,003,696 data points from 548,028 unique students—in Ta-
ble 2 we show statistics describing the differences in the
learning sequences between the two mastery thresholds. In
addition to the average number of actions of each type—
correct answer, wrong answer, or viewing the explanation—
we have also included the median values in parentheses.
Overall, the learning sequences for the high mastery topics
include about two extra learning actions, on average, with
the majority of these extra actions being correct answers.
Also, note that there are slightly more data points from the
low mastery threshold; this is expected, as any successful
learning sequence under the higher mastery threshold would
succeed first under the low mastery threshold, and vice versa
regarding a failing sequence.

High mastery Low mastery
(494,969) (508,727)
Correct answers 4.2 (3) 2.7 (2)
Wrong answers 2.3 (1) 1.9 (1)
Explanations 1.0 (0) 0.9 (0)
Total | 7.5 (5) 5.5 (4)

Table 2: Comparison of learning sequence statistics for topics
in the high mastery and low mastery groups. For each entry
in the table, we show the average number of occurrences per
sequence, with the corresponding median value in parenthe-
ses.

Next, in Figure 3 we show the forgetting curves for the two
different mastery thresholds. To generate the curves, we
group the data into bins based on the number of days be-
tween the time the topic was learned and its appearance as
an extra problem. Next, for each bin we compute the cor-
rect answer rate when the topic appears as the extra prob-
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Figure 3: Forgetting curves comparing high mastery and low
mastery topics from the randomized experiment.

lem, and then we plot the resulting values to get the curves.
While the curves start with a gap between them, this gap
appears to decrease slightly as the time value increases—
however, it is difficult to tell for sure based only on the
forgetting curves.

Because of this, our next step is to apply the regression
analysis described in Section 4. The resulting coeflicients
are displayed in Figure 4a and, for comparison, the original
results from the regression discontinuity analysis in [28] are
then displayed in Figure 4b. In both plots, each (blue) dot
shows the estimated average retention difference between the
two mastery thresholds for the given time category, while the
dashed lines show the 95% confidence interval for each point
estimate. We submit that, overall, the results are roughly
consistent between the two analyses. That is, the great-
est estimated differences occur at the shorter time intervals,
with the general trend being that these differences decrease
as the time value increases. Furthermore, the overall dif-
ferences are relatively small, with most of the estimated
differences being less than 0.02. However, there are some
contrasts in these trends, as the estimates in Figure 4a do
not decrease quite as sharply, and they also appear to con-
verge to a non-zero value; on the other hand, the original
estimates in Figure 4b appear to be converging towards zero.
As the ALEKS system has undergone modifications and im-
provements since the study in [28], it is possible that some
of these differences are due to these changes to the system.

We next run a type of matched analysis. Starting with the
full set of 1,003,696 data points, we find all the students who
have learned at least one topic each using the high mastery
threshold and the low mastery threshold. Then, we use all
of the data points from this group of students. After per-
forming this procedure, we have 460,534 data points from
a total of 140,686 unique students. Of these data points,
229,176 use the high mastery threshold, while 231,358 use
the low mastery threshold.

The resulting coefficients estimates for the matched data are
shown in Figure 4c, with the corresponding results from [28]
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Figure 4: Coefficient estimates of the retention rate differences. The plot in (a) contains the estimates from the randomized
experiment, while (b) contains the results from the regression discontinuity analysis in [28]. Then, (c) and (d) contain the
corresponding results using the matched data; that is, (c) contains the estimates using the matched data from the randomized
experiment, while (d) has the results from the regression discontinuity analysis and matched data in [28].

displayed in Figure 4d. As with the full dataset, we can see
that the estimated differences are highest for the small time
values, with these differences decreasing as the time value
increases. Additionally, the estimated differences are once
again relatively small, with most being around 0.02 or less in
absolute value. Overall, the main features of the two plots
appear to be similar.

6. RETENTION AND STUDENT STRUGGLE

In this section, we take a closer look at the relationship
between the mastery thresholds and the student’s first action
in the learning sequence. Recall that the categorical variable
x5 encodes this information—that is, whether the student’s
learning sequence starts with a correct answer (C*), a wrong
answer (W*), or a viewing of the explanation page (E*).
Using our full set of 1,003,696 data points, partitioned by the
mastery threshold and the first learning action, in Table 3
we show the average total number of learning actions per
learning sequence, along with the average retention rate—in

the latter case, this is the average correct answer rate when
the topic later appears as the extra problem in a progress
assessment.

From these statistics, we can see that students with W* and
E* learning sequences typically require more learning actions
to master the topics, in comparison to the C* sequences.
Additionally, the average retention rates are systematically
lower for the W* and E* sequences, which means these top-
ics are less likely to be answered correctly when they ap-
pear as an extra problem, again in comparison to the topics
learned with C* sequences. Overall, this suggests the stu-
dents with sequences of W* and E* tend to struggle more
when learning the topics. While this makes sense for topics
in the W* category, this is perhaps slightly surprising for
the topics in the E* category. That is, it seems reasonable
for some students to access the explanation not because they
are struggling, but simply to perform their due diligence and
prepare themselves fully before learning the topic. However,
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Figure 5: Coefficient estimates based on the student’s first action.

| C* W E*

N 279,808 144,621 70,540

High mastery  Actions 54 (3) 10.2(8) 10.6 (8)
Retention 0.67 0.57 0.54

N 283,346 151,785 73,596

Low mastery  Actions 35(2) 79(6) 8.4 (6)
Retention 0.65 0.55 0.52

Table 3: Comparison of learning sequence statistics for topics
in the high mastery and low mastery groups, partitioned by
the first learning action. The values in the table include the
sample size for each category; the average number of actions
per sequence (with the median in parentheses); and the av-
erage retention rate, which is defined as the correct answer
rate when the topic appears as an extra problem.

based on these statistics, such behavior does not appear to
be the norm.

Next, to analyze the mastery thresholds for these differ-
ent types of sequences, we use a more complex model with
additional interactions between mastery and the student’s
first action (z1 X x5); the student’s first action and time
(z5 X xe); and mastery, time, and the student’s first action
(1 X x5 X zg). The results are shown in Figure 5, with
each (sub)plot showing the estimated difference in retention
for the specific subset of the learning sequences. Compar-
ing the plots, it appears that the coefficient estimates are
smallest for the C* sequences, indicating that the average
difference in retention between the high and low mastery
thresholds is smallest for this set of sequences; additionally,
the coefficient estimates for the C* sequences are relatively
consistent across the different time values. In comparison,
the estimates for both the W* and E* sequences start off rel-
atively high and then decrease as the time value increases.
Thus, it is interesting and informative to see that the esti-
mated differences are larger for the W* and E* groups, as
this suggests that, at least initially, the extra practice from
the higher mastery threshold has a larger effect for strug-
gling students.

7. DISCUSSION

In this work, we set out to validate the results from our
quasi-experimental study in [28], where we analyzed the re-
lationship between different mastery learning thresholds and
the retention of learned knowledge. We found that, overall,
the results from the current study’s randomized experiment
agree with those from our earlier analysis. Specifically, both
works found that, while there appear to be differences in
retention rates between the two mastery thresholds, these
differences are relatively small, and they tend to decrease as
the time increases between the learning of the topic and its
eventual appearance as an extra problem.

From a methodological standpoint, we find it encouraging
that the results of the RDD analysis in [28] aligned with
the experimental results from the current work. In addition
to giving us more confidence in the techniques we employed
in [28], more generally we also hope that, in some small
part, this encourages other researchers in the field to em-
ploy RDD techniques. As many learning systems use cutoffs
and thresholds to make decisions, running an RDD analysis
could be a promising alternative when a randomized exper-
iment is not feasible.

We next discuss the potential benefits of these findings for
the ALEKS system. With the goal of allowing students to
learn topics more efficiently, there are a few ways in which
the current use of the two mastery thresholds in the system
could be modified. To start, consider that the estimated
differences in retention between the two mastery thresholds
are relatively small. As such, it seems reasonable that the
high mastery threshold could be used less often than it cur-
rently is—this could easily be implemented by adjusting the
initial assessment to define fewer topics in the unknown cate-
gory. As another example, Figure 5 indicates that the extra
practice from the high mastery threshold is less beneficial
for students starting with a correct answer (i.e., the C* se-
quences). Based on this, there is a possible argument for us-
ing the low mastery threshold for all such sequences; specif-
ically, any learning sequence starting with a correct answer
could automatically use the low mastery threshold. Finally,
as a follow-up to the current work, we plan on looking even
further into the data from the randomized experiment, to



see how the results might change based on other factors—
namely, the specific subject area the topic comes from, or
the grade level of the student. Hopefully, such additional
insights would assist in further optimizing the learning ex-
perience for students working in the ALEKS system.
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