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ABSTRACT
Research studies in Educational Data Mining (EDM) often
involve several variables related to student learning activi-
ties. As such, it may be necessary to run multiple statisti-
cal tests simultaneously, thereby leading to the problem of
multiple comparisons. The Benjamini-Hochberg (BH) pro-
cedure is commonly used in EDM research to address this
issue, and it has proven to be a useful method. However, the
main limitation of the procedure is that it requires the statis-
tical tests to either be independent or satisfy certain depen-
dency conditions. The Benjamini-Yekutieli (BY) procedure
is an alternative that can be applied under arbitrary depen-
dence assumptions, but this extra flexibility comes with a
loss of statistical power; hence, the BH procedure is pre-
ferred whenever it can be properly applied. Based on these
considerations, in this work we employ simulation studies to
assess the validity of the BH procedure in two scenarios com-
mon to EDM research. The first scenario considers the eval-
uation and comparison of different classification models—
such an analysis might occur, for instance, during the model
tuning and validation stage of a study. Then, in the second
scenario we look at experiments involving the study of state
transitions in sequential data, examples of which occur in
affect dynamics research. We find that the BH procedure
performs as expected when used with simulated classifica-
tion model predictions; however, when applied to simulated
sequential data, it does not perform at the expected level.
Based on these results, as well as previous studies evaluating
the BH and BY methods, we discuss the appropriate usage
of these procedures for the scenarios under examination.

Keywords
Multiple comparisons, false discovery rate, Benjamini-Hochberg,
Benjamini-Yekutieli

1. INTRODUCTION
Consider a statistical analysis that tests several different null
hypotheses, either on a single data set, or on related data

sets. In such a scenario, the probability of making a dis-
covery—i.e., rejecting a null hypothesis—is higher than in
an analysis involving a single null hypothesis. Thus, it fol-
lows that the probability of rejecting a true null hypothesis
increases as well; such errors are variously called false posi-
tives, false discoveries, or type I errors. This is known in the
statistics literature as the multiple comparisons problem.

Studies in Educational Data Mining (EDM) and related
fields are shaping the ongoing research and development of
learning systems that are increasingly becoming part of ev-
eryday classrooms—thus directly impacting student lives.
Greater attention is needed to ensure that the conclusions
drawn from these studies are reliable. Along these lines,
controlling for multiple comparisons is an important consid-
eration, as it has been argued that addressing the issue is a
major factor in ensuring the replicability of scientific results
[2]. Additionally, many exaggerated or even incorrect re-
sults can be explained by the testing of multiple hypotheses
without adjusting for the number of comparisons [34, 40];
while this issue commonly occurs with observational data,
experimental studies are not immune to the problem [30].

The main focus of this study is the Benjamini-Hochberg
(BH) procedure [3], a method that is commonly applied in
EDM research to control the false discovery rate (FDR)—
defined as the expected rate of false discoveries among all the
discoveries made—when multiple statistical tests are used.
One complication with using the BH procedure is that, in
order for the theoretical guarantees on its performance to
hold, the statistical tests must either be independent or sat-
isfy certain dependency conditions [3, 4]. The Benjamini-
Yekutieli (BY) procedure is an alternative method that can
be used under arbitrary dependence assumptions among the
statistical tests [4]. As the BY procedure is more gener-
ally applicable than the BH procedure, it is by necessity
more conservative and thus less likely to classify a result
as being statistically significant; in turn, this causes it to
have lower statistical power compared to the BH procedure.
Thus, the BH procedure is to be preferred over the BY pro-
cedure whenever it can be properly applied.

However, the difficulty is that verifying the conditions for
applying the BH procedure is not always straightforward;
while some scenarios have been mathematically proven to
satisfy these conditions, many common examples have not
been. For instance, as of 2010 the case of pairwise com-
parisons had not been mathematically proven to satisfy the
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conditions for using the BH procedure [1], and to the best of
our knowledge that has not changed in the interim. Because
it’s not always clear if the conditions for applying the BH
procedure are satisfied, it is often used without any theo-
retical guarantees on its performance [15]. In other situa-
tions, researchers may resort to using both the BH and BY
procedures and comparing the results [28]. Motivated by
these issues, in this work we investigate two different sce-
narios that occur within EDM research, with the goal of
understanding if the BH procedure is appropriate for each
situation. In both scenarios, we assume that a researcher
wants to control the FDR, ideally with the BH procedure,
but is unsure if it will work as desired. As we are unable to
provide mathematical proofs for these scenarios, we instead
turn to simulation studies, a procedure that is commonly
used to investigate the performance of multiple comparison
procedures [1, 3, 14, 22, 31, 32, 38, 39].

The outline of the paper is as follows. We first discuss the
specifics of the BH and BY procedures and how to apply
them when performing multiple hypothesis tests; addition-
ally, we also look at how multiple comparisons are handled
in the EDM community by surveying the literature from the
last five EDM conference proceedings. Then, in the remain-
der of the paper we evaluate the BH and BY procedures for
two scenarios that EDM researchers may encounter in their
work. The first scenario concerns the usage of these proce-
dures for evaluating and comparing the performance of clas-
sification models. In this scenario, we make pairwise com-
parisons of simulated classifiers, using both accuracy and the
area under the receiver operating characteristic curve (AU-
ROC) to evaluate their performance; such a situation can
occur, for example, when trying to find the best performing
combinations of model algorithms and hyperparameters.

The next scenario we look at is the analysis of state tran-
sitions in sequential data. In such an analysis, researchers
typically run several hypothesis tests to try and determine
the importance of the various transitions between states.
Examples of this occur in affect dynamics research, where
the BH procedure is commonly used [18, 29]. Here, we run
analyses on simulated sequences of transitions using two dif-
ferent statistical measures, and we then apply the BH and
BY procedures and compare the results. Finally, based on
the results of our numerical experiments, as well as the exist-
ing literature on controlling the FDR, we discuss the usage
of the BH and BY procedures in these scenarios.

2. CONTROLLING FOR MULTIPLE COM-
PARISONS

2.1 Benjamini-Hochberg and
Benjamini-Yekutieli Procedures

In this study we focus on procedures for controlling the false
discovery rate (FDR). The FDR was introduced in [3], and
it has since found widespread use in many scientific fields in-
cluding education research [38], genetics [31, 35], and medi-
cal studies [4]. If we let V be the number of false discoveries
and S be the number of true discoveries, as done in [3] we
can define the quantity Q as

Q =

{
V

V+S
, if V + S > 0,

0, otherwise.
(1)

Then, the FDR is equal to E[Q], the expected proportion of
false discoveries among all the discoveries made.

The family-wise error rate (FWER), which is defined as the
probability of making at least one false discovery when per-
forming a set of hypothesis tests, is another measure com-
monly associated with the problem of multiple comparisons.
Although the Bonferroni correction is probably the most
famous procedure used to control the FWER, there exist
many other alternatives. However, while such procedures
can be useful in situations in which a false discovery must
be avoided at all costs, such as clinical trials of new medical
treatments [16], the downside to these methods is a loss of
statistical power, resulting in an increased likelihood of miss-
ing true discoveries. While procedures for controlling the
FWER are concerned with the occurrence of any false dis-
coveries, FDR controlling procedures are slightly more per-
missive, as they allow a certain proportion of the discoveries
to be false. Thus, the advantage of FDR controlling pro-
cedures is that they typically have greater statistical power
and, as such, a better chance of correctly identifying true dis-
coveries; the resulting trade-off is that false discoveries are
more likely. However, this trade-off can be beneficial when
a large number of hypothesis tests are being conducted,1 or
when the research is of a slightly more exploratory nature.

In addition to introducing the FDR to the scientific litera-
ture, the authors in [3] also outlined the BH procedure. As
shown there, the BH procedure is mathematically proven
to control the FDR at a given level when the statistical
tests—or, equivalently, the test statistics—are independent.
However, in many practical applications the statistical tests
may have some underlying dependence between them. With
these situations in mind, further important work on control-
ling the FDR appeared in [4], where the authors proved that,
in addition to the independent case, the BH procedure is
valid under certain dependency conditions between the sta-
tistical tests. Among other scenarios, it was shown that the
BH procedure properly controls the FDR with multivariate
normal test statistics having nonnegative correlations. Ad-
ditionally, the authors in [4] introduced the BY procedure for
situations in which the BH procedure is not valid, and they
proved that the BY procedure controls the FDR regardless
of the dependence between the tests.

In the remainder of this section we discuss the application
of the BH and BY procedures. Consider a statistical analy-
sis that involves the testing of m null hypotheses. Of these
null hypotheses, m0 ≤ m are true null hypotheses—these
correspond to the hypotheses that we expect a statistical
test to classify as not being significant—while the remaining
m−m0 hypotheses are the false null hypotheses. Note that,
in practice, m0 is an unknown value. Let P1, . . . , Pm be the
p-values for the m statistical tests, with these values being
listed in ascending order; the corresponding null hypothe-
ses are then represented by H1, . . . , Hm. The relationships

1As a relatively extreme example, statistical analyses in ge-
netics research can involve thousands of hypothesis tests,
and in such cases FWER controlling procedures can be
overly restrictive [1].
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between these various terms can be summarized as follows.

Not significant Significant Total
True null U V m0

False null T S m−m0

(2)

• m = total number of hypotheses being tested

• m0 = number of true null hypotheses

• V = number of false positives (i.e., false discoveries or
type I errors)

• S = number of true positives

• T = number of false negatives (i.e., type II errors)

• U = number of true negatives

Let q represent our chosen threshold—or, level—for control-
ling the FDR, and define FDRmax = m0

m
q. If the statistical

tests are independent, or if they satisfy certain dependency
conditions, it was shown in [4] that the FDR resulting from
an application of the BH procedure is at most FDRmax. Such
an application works as follows. Assuming once again that
the p-values are in ascending order, we find the largest in-
teger k such that Pk ≤ k

m
q. Then, we simply reject all the

null hypotheses Hi for which i ≤ k.

Next, as the BY procedure controls the FDR under arbitrary
dependence assumptions, it is necessarily more conservative
when rejecting a null hypothesis. This takes the form of a
lower threshold for the upper bound used to determine the
“significance”of the p-values. Specifically, we find the largest
integer k such that Pk ≤ k

m·c(m)
q, where c(m) =

∑m
i=1

1
i
.

Using this procedure, it was shown in [4] that the resulting
FDR is bounded above by FDRmax = m0

m
q, regardless of the

type of dependence between the statistical tests.

To see how these procedures work, we next look at an exam-
ple. Suppose we run 10 separate statistical tests (m = 10)
that return the following p-values.

0.002, 0.008, 0.011, 0.013, 0.023,

0.028, 0.092, 0.214, 0.647, 0.853

Next, we compare these p-values to the formulas used for
the BH and BY thresholds, using a value of q = 0.1; for
added context, we also include the results for the Bonferroni
correction. For each method, the thresholds that correspond
to statistically significant p-values are in bold.

k Pk
BH BY Bonferroni
k
m
q k

m
∑m

i=1
1
i

q 1
m
q

1 0.002 0.01 0.003 0.01

2 0.008 0.02 0.007 0.01

3 0.011 0.03 0.010 0.01

4 0.013 0.04 0.014 0.01

5 0.023 0.05 0.017 0.01

6 0.028 0.06 0.020 0.01

7 0.092 0.07 0.024 0.01

8 0.214 0.08 0.027 0.01

9 0.647 0.09 0.031 0.01

10 0.853 0.1 0.034 0.01

For the BH procedure, we can see that k = 6 is the largest
value for which Pk ≤ k

m
q, as we have 0.028 < 0.06. Thus,

the BH procedure, using a value of 0.1, would reject the
null hypothesis for the statistical tests corresponding to the
lowest six p-values. Next, for the BY procedure we see that
k = 4 is the largest value for which Pk is less than the cor-
responding threshold; in this case, we have 0.013 < 0.014.
It’s worth noting that, in this example, even though both P2

and P3 are not below the corresponding thresholds, the BY
procedure still classifies them as being statistically signifi-
cant. This is a feature of FDR controlling procedures that,
in many cases, allows them to be more permissive than pro-
cedures for controlling the FWER.

2.2 Applications in EDM Research
To understand how EDM research is controlling for multi-
ple comparisons, we reviewed EDM conference proceedings
from the last five years (2016–2020). We found that, among
the 22 papers that reported controlling for multiple com-
parisons,2 half used the Bonferroni correction and half used
the BH procedure, with no studies using the BY procedure.
Based on the method used to perform the comparisons, the
studies can be partitioned as follows: group comparison (8),
pairwise comparison (8; including pairwise model compari-
son), correlation (4), and regression analysis (2). The studies
involving group comparisons used statistical methods such
as the Mann-Whitney U test, chi-squared test, t-test, and
ANOVA. The studies employing pairwise comparisons used
methods such as the Kruskal-Wallis test, Mann-Whitney U
test, McNemar’s test, chi-squared test, and t-test. Overall,
these 22 studies investigated diverse educational constructs
in virtual learning environments including affect, student
behavior in MOOCs, help-seeking, collaboration, and self-
regulation.

The choice between the Bonferroni correction and the BH
procedure varied in the studies, as the selection was not com-
pletely determined by the study methodology. For instance,
an exploratory study used the more conservative Bonferroni
method for a correlational analysis [61], while an experimen-
tal study with group comparisons used the less conservative
BH procedure [46]. For EDM research, selecting between the
Bonferroni correction and the BH procedure may not be uni-
versal and likely depends on the context of the study. As an
example, consider that an analysis examining student demo-
graphic differences on an important educational construct—
such as self-efficacy, affect, or learning—likely has fewer data
samples from underrepresented minorities [20]. In such a
case, penalizing the statistical power with a more conser-
vative method like the Bonferroni correction may lead to
missed opportunities for critical discoveries related to eq-
uity. On the other hand, contrast this with the evaluation
of an expensive and large-scale educational technology inter-
vention in a public school system; given the costs involved,
both financially and otherwise, it could be argued that such
an evaluation requires a more conservative approach to con-
trol for false discoveries.

More broadly, EDM research may not always involve large
data sets. This is particularly true for educational constructs
that require resource-intensive data collection procedures—

2See Section 8 for the full list of references.
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e.g., training coders, gathering approvals, and conducting
classroom studies. Hence, using the Bonferroni correction
to control for multiple comparisons at the expense of losing
statistical power may not always be affordable. In contrast,
using the BH procedure in scenarios that violate its sta-
tistical assumptions may lead to invalid conclusions. Our
review of EDM studies from the last five years also revealed
that the field may not be taking advantage of the BY proce-
dure, especially in scenarios where it is difficult to meet the
assumptions of the BH procedure. These observations are
what motivated us to investigate the use of the BH and BY
procedures in research settings relevant to EDM.

3. METHODS
In this section we outline the general procedure we follow
for our simulation studies. Since evaluating multiple com-
parison procedures requires knowledge of whether a null hy-
pothesis is true, and as this isn’t typically known with real
data, simulations are commonly used for such analyses. In
all of our experiments, we begin by generating simulated
data according to a given probability distribution. While
the specifics of this procedure vary for the two scenarios we
consider, the common thread is that this must be done in a
way as to have control over whether or not each null hypoth-
esis is true. For example, in our comparisons of simulated
classification models, the performance of each model is con-
trolled by a single parameter; thus, when this parameter
differs for two models, the null hypothesis that the models
perform equally well is false.

Another important detail is that, as we are focusing on two
particular scenarios, we can generate simulated data specific
to these scenarios. That is, for the model comparison exper-
iments we simulate both the classifier predictions and the
ground truth labels; then, for the state transition analysis
we generate simulated sequences of states. By simulating
the underlying data for each scenario, we are attempting to
evaluate the BH and BY procedures in conditions that are
as realistic as possible. In comparison, other studies that
are more general in nature may simulate the distribution of
the test statistics, rather than the underlying data, when
evaluating multiple comparison procedures.

After generating the data for a simulation run, we perform
our statistical tests and compute the corresponding p-values.
Once this is done, we then apply the BH and BY procedures
for various threshold values q—specifically, we use 0.05, 0.1,
and 0.15 in all our evaluations. While a value of 0.05 is
commonly used, it’s been argued that this threshold may
be too low for some applications [26]; thus, we evaluate a
range of values in our simulations. Based on the statisti-
cal significance results from our application of the BH and
BY procedures, we can compute Q, the proportion of false
discoveries among all the discoveries made, using (1). To
obtain our estimate of the FDR, we then compute the av-
erage of Q over a total of 10,000 simulation runs. For the
various values of q, we compare these FDR estimates to the
values of FDRmax as defined in Section 2.1.

At this point, it’s worth mentioning that the value of Q—
and, hence, the estimated FDR value—can be very different

from the false positive rate.3 Using the notation in (2),
the false positive rate can be written as V

V+U
. In compar-

ison, Q is computed with the formula V
V+S

, which has a
different denominator. Thus, while the FDR is the expected
proportion of false discoveries among all the rejected null
hypotheses, the false positive rate is the (expected) propor-
tion of false discoveries among all the true null hypothe-
ses. Consider the following example. Assume we are testing
20 total hypotheses, all of which are true null hypotheses
(m0 = m = 20). Furthermore, assume that one false posi-
tive is recorded. Then, the false positive rate for this set of
tests would be equal to 1

1+19
= 0.05. However, applying (1)

gives a value of Q = 1
1+0

= 1. This discrepancy is some-
thing to keep in mind as we analyze the results from our
simulation studies in subsequent sections.

4. MODEL COMPARISONS
The first scenario we study concerns the comparison of sev-
eral classification models on a fixed set of test or validation
data. A common example of this occurs during the model
building process, where it may be necessary to evaluate the
performance of many different combinations of classification
models and hyperparameters. In such a case, it can be help-
ful for the researcher to run statistical tests to more precisely
quantify the differences in performance. To that end, we
focus on the pairwise comparisons of the classifiers, where
we assume that the classifiers could have different underly-
ing algorithms—e.g., logistic regression vs. random forest—
or the same algorithm with different hyperparameters. We
evaluate each pair of classifiers by looking at both the accu-
racy and the area under the receiver operating characteristic
curve (AUROC). To measure the possible difference between
the accuracy values of the models, we use McNemar’s test
[13, 27]. When conducting pairwise comparisons of classi-
fier accuracy on a fixed set of test data—as opposed to a
procedure such as k -fold cross-validation, where the test set
varies—using McNemar’s test is recommended [10]; for these
evaluations we use the implementation in the statsmodels

[33] Python library. Then, to compare the AUROC values
we use DeLong’s test [9], a method developed to statistically
test for differences in AUROC values; specifically, we apply
the fast version of the algorithm outlined in [36].4

Our simulations use the following procedure. We assume
that we are evaluating the performance of a binary classifier
on a test set containing n data points; for these simulations
we use n-values of 500, 1000, and 5000. For each value of n,
we sample n numbers uniformly at random from 0.01 to 0.99;
we refer to this set of numbers as Un. In each simulation
run, the numbers in Un are used to generate the labels for
our data using the following procedure. Let i be an integer
from 1 to n, and let pi ∈ Un. With probability pi we assign
a label of 1 to yi; otherwise, with probability 1−pi it is then
given a label of 0. Note that the set Un is generated once
for each value of n, and this same set is then used repeatedly
for all of our simulation runs with a test set of size n.

3That is, while “false discovery” and “false positive” are used
interchangeably, the terms “false discovery rate” and “false
positive rate” have different definitions.
4The code for our implementation of the algorithm in [36],
as well as for running all of our experiments, is available at
https://github.com/jmatayoshi/multiple-comparisons.
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Table 1: Accuracy and AUROC values for an example sim-
ulation run using a test set of size n = 1000.

σ 0.1 0.1 0.1 0.5 1 2

Accuracy 0.733 0.724 0.732 0.706 0.651 0.606
AUROC 0.824 0.821 0.824 0.787 0.721 0.655

We next describe our procedure for simulating the classi-
fier predictions. Let cij represent the predicted probability
given by classifier j for the i-th data point in our test set. To
generate cij , we begin by converting pi ∈ Un to a z-score.
Then, to add noise to the classifier’s prediction we randomly
sample a value, sij , from a normal distribution with mean 0
and standard deviation σj , add this to the z-score, and then
convert everything back to a probability; the resulting value
is cij . The size of σj controls the performance of the classi-
fier, with lower values giving predicted probabilities that are
less noisy and more likely to align with the class labels. Let
Φ denote the cumulative distribution function (CDF) of the
standard normal distribution. Our procedure for generating
the classifier predictions can be summarized as follows.

1. zi = Φ−1(pi)

2. Draw sample value sij from N (0, σ2
j )

3. cij = Φ(zi + sij)

To get an idea of the effect of different values of σ on the per-
formance of our simulated classifier predictions, in Table 1
we show the accuracy and AUROC values from one simu-
lation run, using different values of σ and a test set size of
n = 1000. The three classifiers with σ values of 0.1 have the
best performance, with accuracy values from 0.72 to 0.73
and AUROC values around 0.82. The other classifiers, to
varying degrees, perform worse, with the lowest accuracy
and AUROC values at roughly 0.61 and 0.66, respectively.
Our initial analysis simulates the pairwise comparison of six
different classification models, where all the classifiers are
assumed to perform equally; specifically, we use a value of
σ = 0.5 for each model. Using our previously described
procedure, we generate a total of 10,000 simulation runs for
each value of n. Our experimental setup results in

(
6
2

)
= 15

pairwise comparisons (m = 15), and as there are no underly-
ing differences between the simulated classifiers, we have 15
true null hypotheses (m0 = 15). As such, if the conditions
for the BH procedure are satisfied, we expect the FDR to
be less than FDRmax = 15

15
q = q. The results are shown in

Figures 1 and 2, where we display the estimated FDR rates
for the BH and BY procedures, for different combinations
of test set sizes and values of q. Using both McNemar’s test
and DeLong’s test, the BH procedure appears to control the
FDR by keeping it below the corresponding FDRmax value,
shown by the dashed line, in all cases—that is, for all com-
binations of test set sizes and q. In comparison, the BY
procedure is much more conservative, with each estimated
FDR value far below the FDRmax line.

For our second set of simulations, we use the values of σ
that appear in Table 1 to generate six different models. As
there are three models with the same value of σ = 0.1, we
have

(
3
2

)
= 3 true null hypotheses (m0 = 3) out of 15 total

comparisons (m = 15). Thus, under the appropriate condi-
tions the BH procedure should keep the FDR at or below

FDRmax = 3
15
q = 1

5
q. The results are given in Figures 3 and

4, where we can see that the estimated FDR values using the
BH procedure are at or below the value of FDRmax, given
by the dashed line, in all cases—that is, for all combinations
of test set sizes and q. As before, the estimated FDR values
from the BY procedure are very low, with each value again
appearing far below the corresponding FDRmax line.

These results are seemingly consistent with previous works
analyzing the performance of the BH procedure with pair-
wise comparisons [21, 38]. The findings from several of these
studies are summarized in [39], where the author states that
in “all the studies, for all configurations of true and false hy-
potheses simulated, for balanced and for non-balanced de-
signs, normal and non-normal distributions, the BH proce-
dure controlled the FDR.” Thus, combining these previous
results with our experiments from this section, there appears
to be good evidence that the BH procedure properly controls
the FDR in the case of pairwise comparisons of classification
models. We return to this subject in the discussion.

5. TRANSITIONS IN SEQUENTIAL DATA
In our second scenario we look at data that are sequential
in nature, as examples of such data appear in many areas of
educational research. One particular focus with sequential
data is the analysis of transitions between different states—
or events—in these sequences. Researchers are often inter-
ested in understanding if transitions between certain pairs
of states are significant, either because they happen often or
because they rarely appear. Typically in such cases, many
pairs of states are evaluated with statistical tests, thus neces-
sitating a correction for multiple comparisons. For example,
past studies have analyzed logs of student actions in learn-
ing systems, in an attempt to understand the differences
between productive and unproductive transitions between
activities within these systems [5, 6]. Another example is
affect dynamics research, which studies sequences of student
affective states, with the goal of understanding how students
transition between these different states. Previous works in
this area have used the BH procedure to control the FDR
[18, 29], and as such the goal of our next analysis is to in-
vestigate the appropriateness of using this procedure when
analyzing state transitions.

5.1 Experimental Setup
Our numerical experiments for sequential data evaluate the
BH and BY procedures on simulated sequences of states.
Each of these sequences could represent, for example, a stu-
dent’s affective states while working in a learning system.
The states are randomly sampled according to the proba-
bility distribution given in Table 2; each entry in the table
gives the probability of sampling the next state (column)
based on the value of the previous state (row). For exam-
ple, suppose that C is the previous state. In this case, A
has a probability of 0.2 of being the next state, B has a
probability of 0.2− γ of being the next state, and so on.

For our simulations, we use two different values for γ: 0,
which results in all 25 hypotheses being true null hypothe-
ses; and 0.05, which results in 21 true null hypotheses, out of
the 25. For each value of γ, we generate n sequences consist-
ing of 20 states each. To generate these sequences, the first
state in each sequence is sampled randomly from the five
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Figure 1: Comparison of the estimated FDR for the BH and BY procedures, using McNemar’s test and six classifiers with
the same value of σ = 0.5. Vertical lines represent the 99% confidence interval for each estimated FDR value.
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Figure 2: Comparison of the estimated FDR for the BH and BY procedures, using DeLong’s test and six classifiers with the
same value of σ = 0.5. Vertical lines represent the 99% confidence interval for each estimated FDR value.
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Figure 3: Comparison of the estimated FDR for the BH and BY procedures, using McNemar’s test and the σ values in Table 1.
Vertical lines represent the 99% confidence interval for each estimated FDR value.
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Figure 4: Comparison of the estimated FDR for the BH and BY procedures, using DeLong’s test and the σ values in Table 1.
Vertical lines represent the 99% confidence interval for each estimated FDR value.

Table 2: Probability distribution used to generate the sim-
ulated sequences of states. Each entry represents the prob-
ability of making a transition to the next state (column),
given the previous state (row).

prev
next

A B C D E

A 0.2 0.2 + γ 0.2 0.2− γ 0.2
B 0.2 0.2 0.2 0.2 0.2
C 0.2 0.2− γ 0.2 0.2 + γ 0.2
D 0.2 0.2 0.2 0.2 0.2
E 0.2 0.2 0.2 0.2 0.2

Table 3: Marginal model coefficient p-values from one sim-
ulation run using γ = 0.05. With a threshold of q = 0.05,
both the BH and BY procedures give the same statistical
significance results for this example; namely, only the four
transition pairs with sample probabilities modified by γ are
statistically significant.

prev
next

A B C D E

A 0.252 0.000 0.335 0.000 0.703
B 0.496 0.365 0.327 0.864 0.252
C 0.035 0.000 0.527 0.000 0.569
D 0.260 0.652 0.080 0.980 0.889
E 0.581 0.099 0.800 0.869 0.179

choices, and then all subsequent states are sampled accord-
ing to the probability distribution in Table 2. For each set
of n sequences we evaluate our statistical tests (described in
Sections 5.2 and 5.3) and then compute the resulting value
for Q; this constitutes one simulation run. We then perform
10,000 simulation runs for each value of n in order to obtain
an estimate of the true FDR. For this analysis, we use the
following values of n: 50, 100, and 200.

The L statistic, originally introduced in [12], is intended to
be used as a measure of the significance of different pairs
of transitions, and it has been widely applied in the study
of affect dynamics [11, 12, 18]. Given two states A and B,
it measures the likelihood of transitions from A to B while
taking into account the overall frequency at which B occurs.

However, several recent works have revealed issues with the
use of the L statistic for the analysis of state transitions
[7, 18, 19]. Thus, for our simulations we use two newer
methods that have been developed in response to the prob-
lems with the L statistic. First, in Section 5.2 we look at the
performance of the BH procedure when used in combination
with the marginal model approach outlined in [25]. Then,
in Section 5.3 we evaluate the BH procedure when it is used
with the modified version of the L statistic from [24].

5.2 Marginal Model
To estimate the influence that starting in state A has on the
probability of making a transition toB, in this section we use
the marginal model regression procedure from [25]. In this
approach, the regression model has a binary response vari-
able, where the value of this variable is one if the next state
is equal to B, and it is zero otherwise. Based on the binary
response variable, we use the logit as our link function. Our
predictor—or, independent—variable is also binary, with a
value of one if the previous state is equal to A and zero
otherwise. We can summarize this procedure as follows.

• y = yit: one if B is the next state for student i at time
t; zero otherwise

• x = xit: one if A is the previous state for student i at
time t; zero otherwise

Letting S represent the standard logistic function, the re-
gression equation then has the form

P (yit = 1 |xit) = S(β0 + β1xit) =
1

1 + e−(β0+β1xit)
. (3)

When xit = 1 the regression model returns an estimate for
P (B |A), the probability of a transition to B, given that
the starting state is A. Then, when xit = 0 it returns an
estimate for P (B |A), the probability of a transition to B,
given that the starting state is not A. Thus, to measure
the importance of starting in state A, we focus on testing
if the value of β1 is significantly different from zero. This
is done using a two-tailed z -test on the value of β1 for each
individual fit of the regression model.

Finally, as the sequential data used in these analyses typi-
cally take the form of repeated measurements on a student,
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the result is a set of dependent—or correlated—data. To
account for this dependence, as outlined in [25] we use a
marginal model, based on generalized estimating equations
(GEE) [17, 23], to estimate the logistic regression coeffi-
cients; in particular, we use the GEE implementation from
the statsmodels Python library.

As before, let m denote the total number of statistical tests,
with m0 ≤ m representing the number of true null hypothe-
ses. Using the BH procedure with a value of γ = 0, we
have m0 = m; as such, we would expect the FDR to be less
than FDRmax = 25

25
q = q if the BH conditions are satisfied.

Then, for all values of γ > 0 we would expect the FDR to be
less than FDRmax = 21

25
q, assuming the BH conditions are

satisfied, as m0 = 21 of the tests are true null hypotheses.

The first set of results, using a value of γ = 0, is shown in
Figure 5. Here, we can see that in all cases the estimated
FDR values from the BH procedure are above the theoret-
ical upper bound of FDRmax, shown by the dashed line.
The gap is particularly notable with smaller numbers of se-
quences. On the other hand, the BY procedure offers much
more stringent control of the FDR, with all of the estimated
values appearing below the FDRmax line. Figure 6 then
shows the results from using a value of γ = 0.05. Overall,
the picture appears similar to the γ = 0 case, with the esti-
mated FDR values from the BH procedure always appearing
above the FDRmax line, and with the difference again being
more pronounced with smaller numbers of sequences.

5.3 Removing Self-Transitions
Our final set of experiments investigates a specific situa-
tion in sequential data analysis that occurs when researchers
want to remove the influence of repeated states. To do this,
many researchers in the affect dynamics community remove
self-transitions—i.e., transitions where the same state is re-
peated for more than one step—before analyzing the data
[18]. However, this procedure has been shown to overesti-
mate the significance of transitions when used with the L
statistic [19]. Thus, for this analysis we instead use a modi-
fied version of the L statistic, named L∗ [24].

Definition 1. Let A and B be two states, and let

TA = {transitions where the next state is not A}. (4)

Then, we define

L∗(A→ B) :=
P (B |A, TA)− P (B |TA)

1− P (B |TA)
, (5)

where P (B |A, TA) is the probability of a transition to B in
TA, given that the starting state is A, while P (B |TA) is the
overall probability of a transition to B in TA.

The base rate of the state B, given by P (B |TA) in (5),
can be computed either individually for each sequence, or
averaged over the entire set of sequences. For the computa-
tions in the remainder of this work, we compute these rates
individually per sequence.

Our analysis using L∗ applies the statistic to the sequences
from our experiments in Section 5.2. Specifically, we take

each sequence and, for each pair of transition states, com-
pute (5). To test for statistical significance, we follow the
procedure outlined in [24] and apply a two-tailed t-test to
the L∗ values. The results for the γ = 0 and γ = 0.05 se-
quences are shown in Figures 7 and 8, respectively. While
perhaps not quite as prominent as with the marginal model
procedure, there are several examples where the estimated
FDR values from the BH procedure are clearly above the
FDRmax line. As with the marginal model procedure, the
worst cases occur with the smallest number of sequences.

5.4 Dependence of the Statistical Tests
The experiments in this section provide evidence that, when
used in combination with either the marginal model proce-
dure or L∗, the BH procedure does not always control the
FDR at the desired level; in turn, this may indicate that the
conditions for applying the BH procedure are not satisfied.
In the remainder of this section, we outline two arguments
that show the assumption of independence is violated be-
tween the statistical tests used in these analyses. Note that
these are not rigorous mathematical proofs; rather, our goal
here is to simply give some intuition into the relationships
between the statistical tests.

Consider a set of sequential data consisting of possible states
A, B, C, D, and E. For states A and B, let βA,B represent
the value of β1 in (3) for transitions of the form A → B.
Suppose that the following inequalities hold.

βA,A > 0 βA,B > 0

βA,C > 0 βA,D > 0
(6)

Consider, for example, βA,B . The corresponding marginal
model estimates the probability of a transition to B, de-
pending on whether or not the starting state is A—these es-
timates correspond to P (B |A) and P (B |A), respectively.
The inequalities in (6) can then be interpreted as follows.

P (A |A) > P (A |A) P (B |A) > P (B |A)

P (C |A) > P (C |A) P (D |A) > P (D |A)
(7)

Next, consider the following two equalities.

P (E |A) = 1− P (A |A)− P (B |A)− P (C |A)− P (D |A)

P (E |A) = 1− P (A |A)− P (B |A)− P (C |A)− P (D |A)

(8)

Combining (7) and (8), it follows that P (E |A) < P (E |A),
or, equivalently, that βA,E < 0. What this argument il-
lustrates is that it’s not possible—or, at least, it’s highly
unlikely—for βA,E to be positive when the other four coeffi-
cients are positive, which means that the corresponding sta-
tistical tests are not completely independent of each other.

Next, suppose we are in the situation of removing self-transitions
and applying L∗; thus, in what follows assume we are inter-
ested in transitions from A to B and that, following (4) in
Definition 1, all transitions to A have been removed from
our sequence. Suppose the following inequalities hold.

P (B |A) > P (B)

P (C |A) > P (C)

P (D |A) > P (D)

(9)
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Figure 5: Comparison of the estimated FDR for the BH and BY procedures, using a value of γ = 0 and the marginal model
method. Vertical lines represent the 99% confidence interval for each estimated FDR value.
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Figure 6: Comparison of the estimated FDR for the BH and BY procedures, using a value of γ = 0.05 and the marginal model
method. Vertical lines represent the 99% confidence interval for each estimated FDR value.

Consider the equalities

P (E |A) = 1− P (B |A)− P (C |A)− P (D |A)

P (E) = 1− P (B)− P (C)− P (D),
(10)

where we’re using the fact that, as we are removing transi-
tions to A, P (A |A) = 0 and P (A) = 0. Combining (9) and
(10), it follows that P (E |A) < P (E). Thus, it’s not possi-
ble for all four of the conditional probabilities to be larger
than the base probabilities—in turn, this means that at least
one of the L∗ values must be negative. As such, it follows
that the corresponding statistical tests are not completely
independent of each other.

6. DISCUSSION
In this paper, we investigated the validity of methods used to
adjust for false discoveries when performing multiple com-
parisons. In two scenarios relevant to EDM research, we
evaluated the performance of the commonly used BH proce-
dure in relation to an alternate method—the BY procedure—
that is more general and is valid to use when the assump-
tions of the BH procedure cannot be met. Our first set
of experiments looked at the performance of these proce-
dures when used with pairwise comparisons of classification
models on a fixed set of test data. In all our experiments,
using both accuracy and AUROC as our performance met-

rics, the BH procedure controlled the FDR at the expected
level. These results are consistent with previous studies in-
vestigating pairwise comparisons, where in all cases the BH
procedure properly controlled the FDR [21, 38, 39]. Com-
bining these previous results with the experiments in this
study, our current view is that the usage of the BH pro-
cedures appears justified in this scenario—that is, one can
reasonably expect the BH procedure to properly control the
FDR when performing pairwise comparisons of classifiers on
a fixed set of test data.

Contrast this with our investigation on sequential data, where
we observed that the BH procedure, when combined with
either the marginal model procedure or L∗, did not control
the FDR at the expected level—this happened with various
experimental conditions and for various threshold values q.
The results could be an indication that the theoretical condi-
tions for applying the BH procedure might not be satisfied in
these situations. Combined with the fact that various issues
involving the analysis of state transitions have recently come
to light [7, 18, 19, 24, 25], we believe that using the more
conservative BY procedure is justified, particularly when the
analysis involves a small number of sequences. To compen-
sate for the fact that it is more conservative, when applying
the BY procedure we suggest the use of a larger value of q,
such as 0.1.
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Figure 7: Comparison of the estimated FDR for the BH and BY procedures, using a value of γ = 0 and the L∗ statistic.
Vertical lines represent the 99% confidence interval for each estimated FDR value.
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Figure 8: Comparison of the estimated FDR for the BH and BY procedures, using a value of γ = 0.05 and the L∗ statistic.
Vertical lines represent the 99% confidence interval for each estimated FDR value.

More generally, it’s worth noting that there are many ex-
amples where the BH procedure performs well without any
theoretical guarantees [14, 22]. Thus, for situations in which
the BH procedure has not been theoretically or empirically
vetted, we offer a couple of suggestions. First, whenever pos-
sible, conducting a simulation study may be helpful; as seen
in this work, the results could give evidence for or against
the usage of the BH procedure. Failing that, and if there
is good reason to doubt the validity of using the BH proce-
dure, we suggest that the BY procedure be considered as a
possible alternative. In these cases, a higher value for q may
be justified in order to compensate for the more restrictive
nature of the BY procedure, and this decision could be made
based on the context of the study. For instance, in studies
that are exploratory in nature or have small sample sizes,
the loss of statistical power might be a larger concern; thus,
the BY procedure using a threshold of 0.1 or larger may
be appropriate. Whereas, in an experimental study looking
for conclusive evidence, it may be preferable to use the BY
procedure with a smaller value of q.

In regards to future work in this area, it would be of interest
to more completely understand why the BH procedure fails
to properly control the FDR in our simulations with sequen-
tial data. While we presented an argument in Section 5.4
that showed the statistical tests are not independent, it’s

an open question whether this argument can be extended to
rigorously show that the assumptions of the BH procedure
are violated—we are currently looking at this in more de-
tail. Furthermore, it’s possible that other elements may also
be at play. For example, as discussed previously there are
known issues with several existing methods commonly used
to evaluate state transitions. While the methods we used
in this study were originally developed in response to these
problems [24, 25], it’s possible that these existing issues, or
perhaps even new ones, are a factor; thus, further adjust-
ments to the marginal model and L∗ methods could lead to
improved control of the FDR with the BH procedure.

There exist other directions for future work that we are cur-
rently exploring. First, as the literature on multiple com-
parisons and controlling the FDR is actively growing, many
methods have been developed over the years. Thus, while
the BH and BY procedures are arguably the most notable of
the FDR controlling procedures, it would be worthwhile to
evaluate some of the newer alternatives, especially for the
analysis of state transitions. Second, our analyses in this
work focused exclusively on false discoveries (Type I errors)
and did not consider false negatives (Type II errors). As
such, in future work we aim to explicitly examine the inter-
action between these two types of errors with respect to the
BH and BY procedures and EDM research.
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