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ABSTRACT

As outlined by Benjamin Bloom, students working within
a mastery learning framework must demonstrate mastery
of the core prerequisite material before learning any subse-
quent material. Since many learning systems in use today
adhere to these principles, an important component of such
systems is the set of rules or algorithms that determine when
a student has demonstrated mastery. A relevant issue when
discussing mastery learning is its durability—in particular,
we are interested in the relationship between different mas-
tery learning thresholds and the forgetting of the learned
material. As such, in this study we investigate this ques-
tion using a large data set from the ALEKS adaptive learn-
ing system. Applying a quasi-experimental design, we find
evidence that, while a higher mastery threshold is initially
associated with a higher rate of knowledge retention, after
several weeks this difference has largely disappeared.
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1. INTRODUCTION

Many adaptive learning and intelligent tutoring systems in
use today employ the principles of mastery learning. As out-
lined by Benjamin Bloom [9], in such a framework students
must demonstrate mastery of the core prerequisite mate-
rial before working on any subsequent material. Thus, an
important component of any system implementing mastery
learning is the set of rules or algorithms used to determine
when a student has mastered a skill or problem type. Over
the years, important families of models have been developed
for this purpose, with perhaps the most noteworthy being
Bayesian knowledge tracing (BKT) and its derivatives [6,
17, 43, 68], and the factors analysis family of models, with
examples of the latter including Learning Factors Analysis
(LFA) [13] and Performance Factors Analysis (PFA) [45].
Additionally, other simpler rules and heuristics, such as re-
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quiring students to correctly answer a certain number of
questions in a row [32], are also utilized."

As there is a balance between ensuring students have suffi-
ciently mastered a problem type, while not subjecting them
to more practice than necessary—variously referred to as
“over practice” [14] or “overlearning” [51]—previous works
have looked in detail at mastery learning thresholds and
how to optimize them for various factors such as student
learning efficiency [7, 14] and classification performance [22,
32]. Additionally, it has been argued that the choice of data
and the threshold used are more important than the specific
type of model being applied [46].

A related subject is that of knowledge retention and for-
getting. In particular, the Ebbinghaus forgetting curve [4,
21] models the decay of knowledge over time, with numerous
studies having looked at the conditions affecting these curves
in settings as varied as laboratory experiments [26, 40, 42,
56], classrooms [2, 8, 25], and adaptive learning and intelli-
gent tutoring systems [37, 38, 62, 65, 66]. Other works have
shown that learning systems benefit greatly by accounting
for forgetting [16, 35, 47, 63] and having personalized inter-
ventions and review schedules [34, 44, 55, 58, 67].

In this work, we are interested in the relationship between
different mastery thresholds and the retention of knowledge.
Additionally, we compare and contrast the frequencies at
which problem types are successfully learned under these
mastery thresholds. To perform these analyses, we take ad-
vantage of a “natural” experiment that occurs within the
ALEKS adaptive learning system where, depending upon
the outcome of an assessment given at the beginning of a
course, problem types are assigned to two different mastery
thresholds. By comparing the outcomes from these different
thresholds, we hope to understand more about the relation-
ship between higher mastery, extra practice, and forgetting.

2. BACKGROUND

In this section we give a brief background of the ALEKS
system. Within the system, a topic is a problem type that
covers a discrete unit of an academic course. Each topic con-
tains many examples called instances, with these examples
being chosen so that they cover the same content and are

nterestingly, recent work has shown that some of these
simpler models—including the one we consider in this
study—can be viewed as special cases of BKT [19].
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equal in difficulty. The topics in an ALEKS course contain
many prerequisite relationships. That is, topic x is a pre-
requisite for topic y if = contains certain core concepts and
material that must be learned before it’s possible to learn
the material in y.

At the start of an ALEKS course, the student’s incoming
knowledge is measured by an adaptive initial assessment.
After each question of this assessment, a probability esti-
mate is computed for each topic in the course, with this
probability measuring how likely it is that the student knows
the topic. At the end of the assessment, based on both these
probability estimates and the prerequisite relationships be-
tween the topics, the ALEKS system partitions the topics
in the course into the following three categories.?

e Topics that are most likely known
e Topics that are most likely unknown

e All remaining topics (uncertain)

Next, in the ALEKS learning mode a student is presented
a topic the system believes they are ready to learn, and the
student can access additional topics they are ready to learn
from a graphical list. In all cases, the topics being learned
are from the uncertain and unknown categories. To deter-
mine mastery, a high mastery threshold is used for the un-
known topics, while a low mastery threshold is used for the
uncertain topics (we give precise definitions of these thresh-
olds shortly). As the system is not sure if the uncertain top-
ics are actually known by the student, relaxing the threshold
allows the student to more quickly demonstrate mastery.

When learning a topic, a student can take three possible
actions: submitting a correct answer, submitting a wrong
answer, or accessing an explanation page with a worked so-
lution to the current instance. We define the learning se-
quence to be the sequence of actions taken by the student
while working on a particular topic. A student begins their
learning sequence with a score of 0, whereupon they are
presented an example instance with a worked explanation.
Following this, the student receives another instance for ac-
tual practice. Each time the student receives a new instance,
they can try to answer it, or they can access the explanation
page. Note that a student is always given a new instance af-
ter a correct answer, viewing an explanation, or submitting
two consecutive wrong answers. Depending on the student’s
action, the score is updated based on the following rules.

(1) A single correct answer increases the score by 1; how-
ever, if the correct answer immediately follows a pre-
vious correct answer, the score increases by 2 instead.

(2) An incorrect answer decreases the score by 1 (unless
the score is already at 0).

(3) Viewing an explanation does not change the score.
However, it does affect rule (1)—for example, if a stu-
dent answers correctly immediately after viewing an
explanation, the score increases by only 1 point, rather
than 2, regardless of the student’s previous responses.

2While beyond the scope of this study, the validity of both
the probability estimates and the topic categorizations have
been evaluated in works such as [18, 39].

For an unknown topic, the student must achieve a score
of 5 before the topic is considered mastered—this is the
aforementioned high mastery threshold. Alternatively, top-
ics that are classified as uncertain only require a score of 3 to
achieve mastery—this is the low mastery threshold. Finally,
if a student gives five consecutive incorrect answers, this is
considered to be a failed learning attempt—in such a case,
the student is gently prompted to try another topic.

3. EXPERIMENTAL SETUP

Our study uses data from 13 different ALEKS mathematics
products, ranging from elementary school mathematics to
college-level algebra. From these products, we gathered data
for a total of 2,235,061 students over a three-year period
starting in January 2017. While we don’t have access to
detailed demographic information for our sample, we can
say the majority of the K-12 students are from U.S. public
schools, while the higher education products contain a mix of
students from community colleges and four-year institutions,
again mainly from the U.S.

To test the retention of the topics after they are mastered, we
make use of the ALEKS progress assessment, an assessment
given at regular intervals that is focused on the student’s
recent learning. The progress assessment plays a key role
in the ALEKS system, as it enforces two learning strategies
that have been shown to help with the retention of knowl-
edge: spaced practice [30, 64] and retrieval practice [5, 31,
48, 49, 50]. To evaluate student knowledge retention, we
define the retention rate—or, the correct answer rate—to
be the proportion of the time that students answer topics
correctly in the progress assessment after having mastered
the topics in the ALEKS system.

Our analysis is complicated by a selection bias that ex-
ists with the assignment of the different mastery thresh-
olds. That is, the topics using the low mastery threshold,
being from the uncertain category, are the ones for which
the ALEKS assessment was not confident enough to clas-
sify as either known or unknown by the student—as such,
it stands to reason that some proportion of these topics are
likely known by the students, or that, at the very least, these
topics tend to be easier for the students to learn. In com-
parison, the topics that are classified as unknown by the
ALEKS system are typically more difficult for the students.

Thus, to compensate for this issue, we apply the elements of
a regression discontinuity design (RDD) [59] to our analysis.
RDD is a popular quasi-experimental design that is com-
monly used in fields such as econometrics [3] and political
science [23]. The idea is that, given an experimental condi-
tion assigned by an arbitrary cutoff, it’s plausible the data
points close to this cutoff are similar, regardless of which
side of the cutoff they ultimately fall on. In this study, we
leverage the fact that a probability cutoff determines the
assignment of the mastery threshold in the ALEKS system,
with topics below the cutoff being assigned the high mastery
threshold, while topics above the cutoff are assigned the low
mastery threshold. By comparing topics with probabilities
close to the cutoff, we hope to get accurate estimates of the
differences between the two mastery thresholds.

In order to apply these ideas, we must account for the fact



that the ALEKS system also uses the information from the
prerequisite relationships to assign the mastery threshold to
topics. For example, suppose topic x is a prerequisite for
topic y. Because of this relationship, if x is answered incor-
rectly during an ALEKS assessment, topic y will most likely
be classified as unknown and thus given the high mastery
threshold. Since this decision does not depend directly on
the probability cutoff, we exclude these examples from all of
our subsequent analyses, so that the probability cutoff is the
sole determining factor in assigning the mastery threshold.

4. ANALYZING LEARNING RATIOS

Our first analysis attempts to quantify the differences be-
tween the mastery thresholds by comparing the learning ra-
tios—that is, the proportions of topics worked on by stu-
dents that are eventually mastered. As just discussed, we
want to only look at data points which have the mastery
threshold determined exclusively by the probabilities. Ad-
ditionally, we restrict our analysis to learning data prior to
a student’s first progress assessment, as this assessment can
alter the mastery threshold assigned to a topic, and we only
select data points for which some work has taken place—
for the latter, we minimally require that the student has at
least looked at an example instance of the topic. Finally,
out of the 2,154 total topics in our data set, we remove 7
that, due to technical issues, have systematic problems with
their probability estimates. This leaves us with a total of
58,891,970 data points from 2,181,646 unique students.

Our next step is to select a reasonable bandwidth to conduct
the RDD analysis, that is, a narrow interval around the
probability cutoff to which the data points will be further
restricted. While, all else equal, we want to have as much
data as possible to work with, we also want our bandwidth
to be narrow enough so that the included topics are expected
to be similar in difficulty. We choose a bandwidth of 0.02
around the cutoff, which we believe works reasonably well
at balancing these competing concerns. This leaves us with
1,949,102 data points from 984,138 unique students.

Table 1: Comparison of outcomes for the low mas-
tery and high mastery groups.®
Mastery threshold | Learn  Fail Inc.  No resp.

High (956,260) 0.847 0.057 0.062 0.034
Low (992,842) 0.865 0.052 0.050 0.033

For these data points, Table 1 shows the summary statistics
after partitioning the learning outcomes into the following
four categories.

e Learn: topic successfully mastered

e Fail: topic failed by submitting five consecutive incor-
rect answers

e Incomplete: at least one answer submitted, but topic
is neither learned nor failed

e No response: an instance of the topic is viewed—and
possibly an explanation page, as well—but no answers
are submitted

3Based on 10,000 cluster bootstrap samples—with the data
from each student representing a single “cluster”—the 95%
confidence intervals for the point estimates in Table 1 are
all less than 0.002 in width.

Based on this partitioning, the learning ratio is simply the
proportion of the outcomes in the Learn category. From Ta-
ble 1 we can see that the topics in the high mastery group
have a lower learning ratio in comparison to the low mas-
tery topics—0.847 vs. 0.865, respectively. Furthermore, the
high mastery group has larger proportions of incomplete and
failed topics. Note that all of these results make intuitive
sense—that is, all else being equal, for a given topic we ex-
pect it to be harder to learn under the high mastery thresh-
old in comparison to the low mastery threshold.

One concern we have is that students may be actively seek-
ing out one mastery threshold or the other, with perhaps
the most prominent worry being that students would try to
find the topics with the low mastery threshold, as this infor-
mation is available to them. While our previous experience
working with the ALEKS system has shown us that stu-
dents mostly work on the specific topic the system presents
to them, this is still worth investigating. As a start, we can
look at the proportions in the No resp. column of Table 1—
here, it’s reassuring that these values are similar for the two
different mastery thresholds.

Next, we can look at a density plot of the probabilities to see
if there is an abrupt change as we move across the probability
cutoff. Partitioning the interval [—0.02,0.02] into 100 bins of
width 0.0004 each, in Figure 1 we plot the relative frequency
(proportion) vs. the average distance from the threshold,
based on the probabilities in each bin. While there’s an in-
creasing trend in the density as the x-values increase—which
is a reflection of the distribution of the probabilities, rather
than any particular student behavior—we are specifically
interested in what happens around the probability cutoff,
which is at 0 on the z-axis. As there doesn’t appear to be
clear evidence of a discontinuity—i.e., an abrupt increase or
decrease—around the cutoff, we can use a density test to
more precisely check for such a change [41]. Specifically, we
apply the procedure outlined in [11], where the null hypoth-
esis assumes there is no discontinuity in the density around
the cutoff. Using the R implementation of this procedure in
the rddensity package [12], the resulting p-value is 0.61—
thus, the null hypothesis of no discontinuity is not rejected.
Taking these results together, conservatively we can at least
say there are no obvious signs of a bias from students elect-
ing to work on topics based on the mastery threshold.

S. FORGETTING AND RETENTION

In this next section, we attempt to estimate the differences
in retention and forgetting between the topics that have been
learned with the two mastery thresholds. While doing so,
there are two important factors to consider. First, the stu-
dents who learn with the high mastery threshold get more
practice, as they tend to answer more questions in com-
parison to those who learn with the low mastery threshold.
Second, as we saw previously the high mastery threshold is
associated with a lower learning ratio in comparison to the
low mastery threshold. This indicates there is a selection
bias when we look at the students who learn a topic with
the high threshold and compare them to students who learn
with the low threshold—that is, the students who pass the
high threshold tend to have a slightly better grasp of the ma-
terial, or are perhaps slightly stronger students. Note that
we’d expect both of these factors to benefit the knowledge
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Figure 1: Density plot of the probability values,

based on the distance from the probability cutoff.
(More precisely, the z-axis reports the difference
topic probability — cutoff probability.)

retention of the students who learn with the high threshold.

While it would be of interest to isolate these factors as much
as possible, we won’t be able to separate them in the analysis
that follows, as they are directly connected to the specific
mastery threshold used. On the one hand, from a purely
scientific perspective this is unfortunate, as it would be of
interest to, say, precisely compare the associations between
the different amounts of practice. On the other hand, from a
more practical viewpoint we can still analyze the overall dif-
ferences between the mastery thresholds, which is arguably
of more value for designing and improving adaptive learning
and intelligent tutoring systems.

Table 2: Average number of actions per learning
sequence—numbers in parentheses show the relative
proportion of each action, based on the average total
number of actions in the bottom row.

High mastery Low mastery
(278 126) (302 191)
Correct answers (O 66) (0 61)
Wrong answers (0.23) (0.27)
Explanations (O 10) 0 5 (0.12)
Total | 5.4 3.8

Starting with the data set summarized in Table 1, we extract
the subset of data points that (a) are successfully learned
and (b) appear as questions in the student’s first progress
assessment—this leaves us with 580,317 data points from
436,735 unique students. In Table 2 we show the learning se-
quence statistics partitioned by the mastery threshold. The
high mastery threshold topics have about 1.6 more learning
events, with about 1.5 of these being either correct or wrong
answers. Next, in Figure 2 we show a plot of the reten-
tion rates based on the distance from the probability cutoff,
with the data points being divided into equal-width bins of
0.005, starting at -0.02 and ending at 0.02. For each bin the
y-value represents the average correct answer rate when a
topic appears in a student’s first progress assessment, while
the z-value is the average distance from the probability cut-
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Figure 3: Mastery threshold forgetting curves.

off. Note there is a clear drop in retention as we move across
the probability cutoff to the low mastery threshold topics.
However, as we are studying the retention of knowledge, one
factor we haven’t taken into account is time. In particular,
we next look at the forgetting curves for these data to see
how these relationships might change at different time scales.

To generate these curves, for each data point we compute
the time in days between the learning of the topic and its
appearance on the progress assessment. Then, we group the
data points into bins of width one day, compute the reten-
tion rate within each bin, and plot the results in Figure 3.
The solid (blue) line shows the curve for the high mastery
threshold topics, while the dashed (orange) line shows the
curve for the low mastery threshold topics. For time values
less than two weeks, the retention rate for the high mastery
threshold group is higher—however, for larger time values
it’s not quite as clear how much of a difference, if any, exists
between the retention curves.

We next use a linear regression model to more precisely es-
timate the differences in retention between the two mastery
threshold groups—as our outcome variable is binary, this



model is known as a linear probability model. While the use
of a generalized linear model—such as logistic regression—
is typically recommended with binary outcome variables, we
prefer to use a linear regression here to make it easier for us
to interpret the coefficients. Although the use of a linear
model with a binary outcome variable could theoretically
lead to biased estimates, it’s been argued that this bias is
typically low [3]. Additionally, a criticism of the linear prob-
ability model is that it could give invalid probability esti-
mates less than zero or greater than one. However, based
on previous works analyzing forgetting in the ALEKS sys-
tem [18, 36, 37, 38], we expect the probability estimates of a
correct answer to be bounded well away from zero and one.

As some students appear multiple times within our data,
we treat data points associated to the same student as a
“group” or “cluster”—this leaves us with 436,735 clusters,
one for each unique student. To handle these clusters ap-
propriately, in each of our analyses we fit a marginal model
using the generalized estimating equation (GEE) class in
the statsmodels [54] Python library. GEE models are com-
monly applied in epidemiological studies and analyses con-
taining repeated measurements [27, 28, 33, 57], making them
well-suited for our study.

Our regression models include the following predictors.

e z;: 1 for high mastery; 0 for low mastery
e x5 Initial assessment probability estimate

e x3: Initial assessment score = (number of topics clas-
sified as known) / (total number of topics in course)

e z4: Categorical variable encoding ALEKS product

e 15: Categorical variable encoding first event in learn-
ing sequence (correct, incorrect, or explanation)

e 14: Categorical variable encoding time (in weeks) since
topic was learned (see Table 3)

e z7: Interaction between mastery and time (z1 X )

The variables 1 and x7 are our main focus, as we want to
estimate the average difference in retention between the two
mastery groups—additionally, we want to see if these differ-
ences vary across the categories of the time variable. The
remaining predictors are control variables, as they can help
adjust for factors such as variation in starting knowledge
(z3), general differences between students using the various
ALEKS products (z4), and the amount of initial struggle
experienced by the students while learning the topics (zs).
Finally, it’s generally considered good practice to include
the assignment variable, represented here by the probability
estimate x2, in the regression as well [23].

Regarding the time since the topic was learned, a complica-
tion with this variable is that it’s technically a post-treatment
variable—that is, it’s measured after the “treatment” occurs,
where in our case the treatment corresponds to the success-
ful learning of the topic with the high mastery threshold. If a
causal link is suspected between the post-treatment variable
and the treatment, including the post-treatment variable in
the regression could bias the estimate of the coefficient for
the treatment variable [1, 53]. While we don’t have a com-
pelling reason to think there is a causal link between the

Table 3: Categorical variable for time (z¢).

Category Description

1 Less than 7 days after learning
2 Between 7 and 14 days after learning
9 Between 56 and 63 days after learning
10 More than 63 days after learning
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Figure 4: Coefficient estimates of the retention rate
differences.

mastery threshold and the time variable, we use the follow-
ing procedure in an attempt to address the possibility of
post-treatment bias. First, we run our regression analysis
including the categorical variable for time. Next, we re-run
our analysis using the two-step regression procedure known
as the sequential g-estimator [29, 60]. Using this procedure
allows us to make an estimate of 3, the coefficient of the
treatment, that adjusts for possible bias from the inclusion
of the post-treatment variable [1, 24, 29, 60, 61]. Compar-
ing the results using the sequential g-estimator to our first
regression, we do not see any substantial differences—for
example, in the first model we fit, the estimates of the co-
efficients of interest differ by less than 0.0013 in absolute
value. Thus, to simplify the exposition, in what follows we
describe and report the results from the models fit without
using the sequential g-estimator.

Figure 4 shows the results from fitting a model with vari-
ables z1 through x7. For the given time category, each (blue)
dot represents the estimated average difference in retention
between the two mastery thresholds, with the dashed lines
showing the 95% confidence interval for each estimate. For
example, the first dot represents the data points with a re-
tention time of less than seven days, where the high mastery
group has an estimated average retention rate that’s higher
by about 0.03, with a 95% confidence interval of (0.025,
0.036). The general trend suggests that larger time values
are associated with smaller retention differences between the
two groups. These results appear to be consistent with the
plots shown in Figure 3, where the gap between the two
forgetting curves is smaller for the larger time values.

Next, we take a different approach and use a type of matched
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bandwidths of 0.02 (top) and 0.04 (bottom).

design. Starting with the 580,317 data points from our pre-
vious analysis, we restrict the data to the 59,689 students
who have learned topics using both mastery thresholds. This
leaves us with 72,279 high mastery topics and 73,851 low
mastery topics. The results from fitting a model using the
variables x; through z7 are shown in the top plot of Fig-
ure 5. Similar to the results from the unmatched data in
Figure 4, the estimated average difference is about 0.03 for
week 1, while then dropping below 0.02 for week 2. While
the point estimates appear to have a negative trend—that is,
the higher time values are associated with smaller estimated
retention rate differences between the two mastery thresh-
olds, on average—the trend is not nearly as pronounced as
the one in Figure 4, and the estimates tend to be noisier.

In an attempt to get cleaner estimates of the average reten-
tion differences between the two mastery groups, we enlarge
our data set by using a wider bandwidth of 0.04—this gives
a total of 1,163,706 data points. Restricting our analysis to
the 168,339 students who have examples of topics learned
with both mastery thresholds, we have a new data set con-
sisting of 476,105 data points. The results from the regres-
sion fit on this new data set are shown in the bottom plot of
Figure 5, where it’s instructive to see that there is a clearer
pattern than in the top plot—that is, using the enlarged
data set, there appears to be a fairly strong negative associ-
ation between the time values and the estimated differences
in retention, similar to the results shown in Figure 4.

6. DISCUSSION

In this work we presented a detailed comparison of two mas-
tery learning thresholds that are used in the ALEKS system.
Attempting to adjust for selection effects and other possible
confounding variables, we utilized elements of a regression
discontinuity design by leveraging the fact that the assign-
ment of the mastery threshold is determined by a probability
cutoff value. Focusing on topics with probabilities close to
this cutoff, we looked at the learning outcomes for the two
different mastery threshold groups, with the results suggest-
ing that, while differences do exist, they are not particularly
large. For example, the average learning ratio difference
between the two groups was less than 0.02. Additionally,

we used regression models to estimate the average differ-
ence in knowledge retention between the mastery threshold
groups. The overall retention rates were more similar than
we might have expected a priori and, furthermore, we saw
evidence that the difference in retention rates between the
two groups was negatively associated with time—that is,
longer time gaps between the initial learning and the test of
retention had smaller average differences in retention.

While performing our analyses, we investigated, and at-
tempted to adjust for, several potential sources of bias and
confounding. Nonetheless, being an observational study it’s
possible that other sources of bias exist. Thus, in what fol-
lows we interpret our results within the larger literature on
learning and retention, and also discuss potential implica-
tions for the ALEKS system, all while keeping this caveat
in mind. To start, given that the difference in retention be-
tween the mastery threshold groups was smaller for larger
time values, this might suggest that any possible gains from
the high mastery threshold are not persistent. Notably, prior
research on learning has shown that massed practice (i.e.,
grouping learning into a single session) and overlearning (i.e.,
continuing to practice after a skill has been mastered), while
possibly beneficial in the short-term, do not lead to learning
that is especially durable or long lasting [30, 51]. However,
as most experiments studying these learning strategies in-
volve simple verbal tasks in a laboratory setting [10, 15, 51],
we found it informative to see similar results for students
learning mathematics in an adaptive learning system.

Furthermore, while only a limited number of experiments
investigate these issues for learning mathematics, two par-
ticular studies seem relevant and informative for our current
work. First, the results in [51] indicated that the gains from
massed practice of mathematics problems did not appear
to be as durable as those from using distributed practice—
specifically, while the benefits from these techniques ap-
peared similar after a week, with a longer gap of four weeks
distributed practice was superior. Second, in [52] two massed
practice conditions for learning mathematics problems—with
these conditions being somewhat analogous to our high mas-
tery and low mastery conditions—were compared, with no
clear difference in performance observed between the condi-
tions. Thus, the outcomes of these two studies are seemingly
consistent with the results from our current work.

If the results of this study prove to be valid, a possible ad-
justment to the ALEKS system is to reduce the usage of
the higher mastery threshold for topics close to the proba-
bility cutoff. The benefit of this approach is that it would
allow students to more efficiently learn additional topics.
Taking a slightly different view, it’s well-documented that
distributed practice is more effective as an overall learning
strategy in comparison to massed practice [10, 15, 20, 30,
64]. Thus, rather than removing the high mastery threshold
completely, perhaps the extra practice enforced by the high
mastery threshold could be distributed over multiple learn-
ing sessions. Additionally, as previous work found evidence
that retrieval practice within the ALEKS system is associ-
ated with better retention [38], it would be of interest to find
the most effective way of combining the principles of both
retrieval and distributed practice in the system. This is a
line of research we are currently exploring in more detail.
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