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Abstract: One of the benefits of adaptive learning systems is that they allow students to 

work at their own pace. Because of this, students may exhibit drastically different learning 

patterns, some of which are symptomatic of misuse or suboptimal use of the system, or 

simply of possible inadequacy in the system. Identifying such patterns allows the system or 

the instructor to take corrective action to ensure that students are having a successful learning 

experience. ALEKS, which stands for “Assessment and LEarning in Knowledge Spaces”, 

is a web-based artificially intelligent learning and assessment system. In this work we 

attempt to identify and classify various learning patterns that students exhibit while working 

in the ALEKS learning mode. To do this, we first build a set of statistical features for 

describing the learning behaviors that students exhibit. After using these features to identify 

an example set of students, we use semi-supervised machine learning techniques combined 

with an artificial neural network to apply these classifications to the rest of our dataset. 
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1. Introduction 

 
ALEKS, which stands for “Assessment and LEarning in Knowledge Spaces”, is a web-based 

artificially intelligent learning and assessment system (Falmagne et al., 2006).  The artificial 

intelligence of ALEKS is a practical implementation of knowledge space theory (KST), a 

mathematical theory that employs combinatorial structures to model the knowledge of learners 

(Doignon and Falmagne, 1985; Falmagne et al., 2013; Falmagne and Doignon, 2011).  KST has 

been successfully applied to such subjects as math (Huang et al., 2016; Reddy and Harper, 2013), 

chemistry (Taagepera and Arasasingham, 2013) and even dance education (Yang et al., 2012).  

Using KST, the ALEKS system assesses a student's knowledge in a particular academic course, and 

it then places her at the appropriate place in the course so that she can begin with the material that 

she is most prepared to learn. In a typical ALEKS course, the bulk of a student's time is spent in this 

“learning mode", where the student receives targeted practice and instruction on the concepts that 

she has not yet mastered. 

 In this paper, we attempt to understand and classify the various learning patterns that 

students exhibit in the ALEKS learning mode.  We start by building a set of statistical features that 

helps us separate the students with extreme learning patterns from the students with more typical 

behaviors.  Once we have these features, we devise four different learning classes, based on the 

behaviors that students exhibit, and then manually validate and assign a sample of students to each 

class.  Finally, we use semi-supervised machine learning techniques to combine this small amount 

of labeled data with the much larger amount of unlabeled data and build a classification model that 

allows us to label all of the students in our dataset.  A first implementation uses a logistic regression 

classifier. To overcome its observed limitations, our final model uses an artificial neural network. 

 

 

2. Background 

 



In KST, an item is a problem that covers a discrete skill or concept.  Each item is composed of many 

examples called instances, which are carefully chosen to be equal in difficulty and cover the same 

content.  A knowledge state in KST is a collection of items that a student could conceivably know 

at any one time.  In other words, a set of items is a knowledge state if one can expect a student to 

know all of the items in the set, while not knowing any of the items outside the set (after discounting 

lucky guesses and careless errors).  For example, the empty set and full set are always considered 

valid knowledge states. 

A student begins an ALEKS course by taking an initial assessment.  The initial assessment 

is an adaptive assessment designed to determine what the student knows and, based on this 

information, what he is ready to learn next.  We refer the reader to chapters 2 and 8 of Falmagne et 

al. (2013) for more detailed information on how the ALEKS assessment works. 

After the initial assessment, the student enters the ALEKS learning mode and works on the 

specific material that the system deems he is ready to learn.  The ALEKS learning mode functions 

by giving a student targeted instruction and practice on a single item at a time.  The student is 

presented several instances of the item, and he must correctly answer these instances until he 

demonstrates mastery of the item.  During this time, the student is allowed to view an explanation 

of the current instance, which instructs him on how to solve the given problem.  Once the student 

has finished viewing the explanation, he is then given a new instance to solve.  At any time in the 

ALEKS learning mode, the student has the option of working on any of the items that the ALEKS 

system deems him ready to learn. 

 

 

3. Measures of Student Behavior (Features) 

 
The dataset under consideration from the ALEKS learning mode consists of three types of actions, 

or events: correct answers, wrong answers, and viewing of the explanation.  Based on these actions, 

the following time-dependent rate functions of student behavior are used for our model. 

 

 Items learned per hour of login time (login hourly learning rate) 

 Proportion of actions consisting of using the explanation (login explanation rate) 

 Proportion of actions consisting of a correct answer (login correct answer rate) 

 Items learned per day in course (daily learning rate) 

 

For each of these rates, we are looking for a single statistic that captures the “steadiness” of a 

student’s performance with respect to that rate.  Thus, for each rate function f we compute the score 
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where t is time and μ(f) is the mean of the student's rate up to time T.  This gives a unitless measure 

that takes values on the interval [0, 2).  It is worth noting that this measure of steadiness does not 

depend on how a student performs relative to the other students or on the magnitude of the rate.  

Instead, it only depends on the (time) variation of the rate around its mean.  Additionally, we are 

also interested in how the hourly learning rate evolves over the length of a course.  To measure this 

evolution, a linear regression is fit for each student's hourly learning rate, and the slope of this 

regression is used as a measure of the student's “learning trend”.  Combining these measures, the 

five features for our model consist of the steadiness measures for the four rates, and the learning 

trend. 

 

 

4. Constructing the Student Labels 

 



The five features in the previous section are designed to identify and differentiate the following 

classes of student behavior. 

 

 Erratic (suspicious) learning 

 Procrastination/cramming 

 Plateaued learning (“hitting a wall”) 

 Normal  

 

Our emphasis is not on identifying a student as being, for instance, a slow or a fast learner—for 

which the mean hourly learning rate would be an appropriate measure. Rather, we are interested in 

identifying changes in learning dynamics that point to potential underperformance in the use of the 

learning system. Consequently, feedback from instructors using ALEKS in a classroom setting, 

along with exploratory analyses of learning data from 2484 students in a college-level Basic Math 

course, lead to the selection of the above behavioral classes and to the use of rate steadiness to 

capture them. 

The students in the erratic, or suspicious, learning class are identified mostly by large 

fluctuations in their hourly learning rate.  Anecdotally, we have been informed of several cases 

where students are having someone else do their work in the ALEKS learning mode, resulting in 

short bursts of abnormally rapid progress.  An example of this behavior is shown in Figure 1 (blue 

curve).  From this plot it seems very likely that we are dealing with two distinct learning patterns, 

one during the first 28 hours or so of the course, and then another from there on.  Patterns such as 

these are what motivated the design of our features, which are engineered to find learning patterns 

that exhibit a large amount of variation. 

 

 
 

Figure 1. Example student with a highly variable hourly learning rate 
 

Interestingly, while the variation in the hourly learning rate is the most obvious, the erratic 

students also exhibit large amounts of variation in the rates in which they answer correctly, and also 

in which they use the explanation.  These effects are also shown in Figure 1.  As with the hourly 

learning rate, at about 28 hours both of these values show a distinct transition, with the correct rate 

starting below 0.6 and eventually peaking at over 0.95.  Conversely, the usage of the explanation 

becomes essentially non-existent after this time. 

The next class of student learning we encounter is that of procrastination and/or cramming.  

In contrast to the students with erratic learning, these students have a relatively consistent hourly 

learning rate, which is evidence that we are dealing with one actual student learning profile.  

However, the larger fluctuations appear in the daily learning rate, where for the most extreme cases 

it is clear that we are seeing students cramming their learning into a short period either before the 

end of the course, or before an important exam.  An example of such a pattern is shown in Figure 2, 

where the majority of the learning is concentrated in two periods near the end of the course.  For this 

same student, Figure 3 shows the hourly rate, along with the correct and explanation rates.  In 



contrast to the erratic profile in Figure 1, the shift for this student is more subtle.  While there is an 

increase in the hourly learning rate towards the end of the course, which corresponds to the spikes 

in the daily learning rate, the correct rate during this time is not significantly different from the time 

period just before (as opposed to the large spike in Figure 1).  Additionally, the increase in the hourly 

learning rate can be reasonably explained by the large drop in the usage of the explanation, which 

previously constituted a significant amount of the student's learning events (roughly 30% for most 

of the course).  Thus, rather than this being the work of a separate person, this is most likely a student 

who had previously spent a significant amount of time using the explanation, which in turn lowered 

the hourly learning rate, and who thereafter made a more concerted effort to solve and master the 

items at a faster pace. 

 

 
 

Figure 2. Example student with a highly variable daily learning rate 

 

 
 

Figure 3. Login learning rate plots for student in Figure 2 

 

The third class of learning pattern consists of students whose learning has slowed down 

considerably, or even stopped completely, over the length of the course.  Like students with erratic 

learning, these students with plateaued learning (or, “hitting a wall”) also show variability in their 

hourly learning rate, though it tends not to be as extreme.  Additionally, they are also characterized 

by a negative trend in their hourly learning rate. Figure 4 shows one example of such a student. The 

student has a consistent hourly learning rate through the first few hours of the course, but after that 

time the rate begins to decline.  Interestingly, we can see that the correct rate is mostly steady, until 

it declines and reaches its minimum near the end of the course.  At the same time, while the correct 

rate is declining, we see a corresponding increase in the usage of the explanation, giving more 

evidence that this particular student is struggling to make progress in the learning mode. 



 

 
 

Figure 4. Example student with declining hourly learning rate 

 

The final class consists of the rest of the students who do not fit into any of the previous 

three classes, and it comprises the bulk of the data.  

Based on the insights described in this section, the following procedure was used to assign 

class labels to a sample of students.  The five features were computed for each of the 2484 students 

in the Basic Math course, and these features were then used to identify a sample of 32 students 

containing potential examples from each class.  Typically, for students potentially in one of the three 

extraordinary classes, the values of one or more features were above the 95th percentile (see Table 

1).   These 32 students were then manually evaluated and labeled independently by two experts, who 

based their evaluations on the complete learning profiles of the students (i.e., extra data that were 

not part of the model were used for these evaluations).  The experts had an initial inter-rater 

agreement for these labels, as measured by Cohen’s kappa, of 0.77.  As a last step, the experts 

discussed the discrepancies and agreed on the final labels of the 32 students.  Table 1 shows the 

features for example students from each of the classes. 

 
Table 1 

Examples of learning patterns and their feature values for 7 of the 32 labeled students.  The 5th and 

95th percentiles for each feature are listed beneath the column headers, and values outside these 

bounds are highlighted in bold in the body of the table. 

 Steadiness Rates  

Class 
Hourly Explanation Correct Daily Trend 

(0.22, 0.53) (0.16, 0.62) (0.11, 0.29) (0.94, 1.65) (-0.44, 0.32) 

Normal 0.2848 0.1641 0.1659 1.3738 -0.0475 

Erratic 0.7547 0.929 0.2952 1.5842 2.985 

Erratic 0.6264 0.5197 0.3883 1.6749 -0.6103 

Hitting a wall 0.4362 0.2538 0.1509 1.3399 -0.510 

Hitting a wall 0.423 0.3478 0.2002 1.7609 -1.088 

Cramming 0.2855 0.3756 0.2462 1.8265 0.340 

Cramming 0.1812 0.2025 0.1131 1.8537 -0.184 



 

5. Model Building 
 

To build our student classifier, we will use a semi-supervised machine learning model.  Semi-

supervised learning models lie between supervised and unsupervised learning, and the unique feature 

of these models is that they are able to take advantage of both labeled and unlabeled data.  Such 

techniques can be very useful in situations where the amount of labeled data is small in comparison 

to the amount of unlabeled data.  This situation can occur, for example, when assigning accurate 

labels to data takes a considerable amount of manual (human) effort.  In such a case, adding the large 

amount of extra unlabeled data can possibly give a large increase in the accuracy of the model 

(Mitchell, 1999; Nigam et al., 2000).  For a thorough introduction to semi-supervised learning, we 

refer the reader to Chapelle et al. (2006) or Zhu and Goldberg (2009) 

Our first attempt at building a classifier consists of a logistic regression model that is modified 

to take advantage of the unlabeled data using entropy regularization (Grandvalet and Bengio, 2006; 

Zhu and Goldberg, 2009).  The key assumption made by entropy regularization in a semi-supervised 

classification problem is that the classes are separated by low density regions (see Grandvalet and 

Bengio, 2006, section 9.2; Zhu and Goldberg, 2009, sections 6.3 and 6.4).  In our particular problem, 

we are looking for extreme student behaviors that fall outside the normal learning patterns.  Thus, 

we expect that any students fitting these patterns are well-separated from students exhibiting more 

standard learning patterns.  Using entropy regularization, the cost function for logistic regression 

can be modified with an additional summand of the form (see Grandvalet and Bengio, 2006, section 

9.2; Zhu and Goldberg, 2009, section 6.3) 

 

𝜆

𝑢
∑ ∑ 𝑃(𝑘|

𝐾

𝑘=1

𝑢

𝑖=1

𝐱𝑖)ln 𝑃(𝑘|𝐱𝑖), (1) 

 
where u is the number of unlabeled examples, K is the number of classes,  𝑃(𝑘|𝐱𝒊) is the predicted 

probability of class k, and 𝜆 is a scale factor that determines the contribution of the unlabeled data. 

The results using a logistic regression classifier are shown in Figures 5 and 6, where we can 

see that the classes seem to be relatively well-separated from each other.  For example, the students 

with plateaued learning are separated from the other classes by their low hourly learning rate trend 

values.  Similarly, the students exhibiting erratic learning are mostly identifiable by the large values 

of the hourly learning rate steadiness. 

 
Figure 5. Classifications using logistic regression and entropy regularization 



 

 
 

Figure 6. Classifications using logistic regression and entropy regularization 

 

While the logistic classifier gives good results on the whole, upon closer examination it 

becomes apparent that there are some limitations to the model.  To better illustrate this point, the 

right plot in Figure 6 shows the performance of the classifier on the labeled data.  Each diamond 

represents a labeled data point from one of the three extraordinary classes.  The solid colored 

diamonds are correctly labeled by the classifier after training, while the diamonds with two colors 

are not.  For these mislabeled points, the left color represents the actual ground truth label, while the 

right color shows the predicted label assigned by the classifier. 

One issue has to do with the learning trend values.  As previously mentioned, a low value 

for this feature is typically a good indication that the student's learning has stalled.  Furthermore, 

when numerous example classifications from the logistic classifier are checked manually, this 

assumption holds for the vast majority of them.  However, there are a few specific cases where an 

extremely low learning trend value does not fit the intuitive definition of plateaued learning.  These 

cases follow a similar pattern where a student, at some point in the course, shows a large (and 

suspicious) spike in the hourly learning rate.  This spike is short-lived, and then the hourly learning 

rate returns to its previous level.  Thus, these students are better labeled as having erratic learning 

patterns, rather than having plateaued, because the increase in the learning rate is dramatic enough 

that it seems likely to have come through some sort of suspicious behavior (such as using unapproved 

outside resources, or having someone else doing the work for them).  However, if this spike in 

learning happens to have occurred early in the course, the overall hourly learning rate shows a large 

downward trend, which in turn (most likely) causes the logistic classifier to label the student as 

hitting a wall.  Thus, we are simply running into the limitations of a linear model (i.e., the logistic 

classifier) trying to separate classes with a non-linear boundary. 

To better handle the non-linear boundaries in the data, we next build a classifier using an 

artificial neural network.  Deep learning, of which neural networks are an important component, has 

recently achieved dramatic successes in various fields (LeCun et al., 2015) and is beginning to move 

into the education domain. One successful application employed deep learning for affect detection 

(Botelho et al., 2017), while another technique known as Deep Knowledge Tracing (DKT) is being 

actively studied (Khajah et al., 2016; Piech et al., 2015; Xiong et al., 2016).  Our specific architecture 

consists of a small multilayer perceptron with 3 hidden layers of 10 units (nodes) each.  For the 

activation function of our hidden units we use a rectified linear unit (ReLU), which is a common 

and successful non-linear activation function (LeCun et al., 2015).  To handle the unlabeled data, 

we again use entropy regularization as shown in equation (1).  

The results using the neural network are shown in Figure 7, where in the right plot we can 

see that all the labeled data for the extraordinary classes are now correctly classified.  Additionally, 

the neural network also shows improvement with other unlabeled extreme values.  For example, the 

logistic model has a tendency to classify students with extremely large positive learning trend values 



as being procrastinators/crammers.  However, many of these students are more correctly classified 

as showing erratic or suspicious behavior, as the large value of the learning trend is (typically) caused 

by a large spike in the hourly learning rate at a later point in the course.  Similarly, the students with 

extremely low learning trend values are better classified by the neural network as being erratic 

learners, rather than as hitting a wall. 

 

 
 

Figure 7. Classifications using multilayer perceptron and entropy regularization 

 

 

 

6. Model Validation 

 
Now that we have evidence that the neural network approach improves on the limitations of the 

logistic regression, we will next validate the performance of the neural network model.  To do this, 

we begin by supplementing our data with an additional dataset from a college-level Intermediate 

Math course.  This new dataset consists of data from 8315 students, 32 of whom have been manually 

assigned a label from one of the four learning pattern classes (using a similar procedure to the one 

outlined at the end of section 4).  In total, we now have a combined dataset of 10799 students, 64 of 

whom have been assigned labels.  The 64 labeled students consist of 18 in the erratic class, 11 in the 

hitting a wall class, 14 in the cramming class, and 21 in the normal class. 
Due to the small amount of labeled data, we use cross-validation to estimate the accuracy of 

our model, rather than partitioning the data into fixed training and test sets.  Additionally, since we 

use the architecture described in the previous section (i.e., 3 hidden layers of 10 nodes each, 

combined with a ReLU activation function), the only hyperparameter that we vary is a scale factor 

determining the contribution of the unlabeled data to the loss function.  This scale factor is 

represented by 𝜆 in equation (1).  Thus, in order to vary this factor and still obtain an accurate 

estimate of the model’s performance, we apply nested k-fold cross-validation to the labeled data.  

Using nested k-fold cross-validation, rather than k-fold cross-validation without nesting, reduces the 

bias when evaluating a model’s expected performance (Cawley and Talbot, 2010; Varma and Simon, 

2006).  We use 16 folds of 4 data points each for the outer loop, and 15 folds of 4 data points each 

for the inner loop, while using the same complete set of unlabeled data for all training iterations.  

That is, at each iteration the training set consists of either 60 (for the outer loop) or 56 (for the inner 

loop) labeled examples, in addition to all 10735 unlabeled examples, while the test set simply 

consists of 4 labeled examples.  Using this procedure, 57 of the 64 labeled examples are correctly 

classified in the outer loop, for an overall estimated accuracy of 89.1%. 

Independently of the overall accuracy of the model, we are also interested in measuring the 

relative effect of adding the unlabeled data to the model.  Thus, as an additional analysis separate 

from the procedure discussed in the previous paragraph, we use repeated k-fold cross-validation, 

without nesting, for various values of the unlabeled data scale factor.  For reference, a value of 0 for 



this factor means the unlabeled data have no effect on the loss function, while a value of 1 means 

the unlabeled data have equal weight in comparison to the labeled data (with the effect of the other 

values then falling somewhere in-between these two extremes).  Furthermore, we also evaluate the 

performance when entropy regularization is combined with a newer and more advanced method 

known as virtual adversarial training (VAT), a combination that has recently achieved state-of-the-

art performance on several standard benchmarks (Miyato et al., 2018; Oliver et al., 2018).  Using 

100 separate trials of k-fold cross-validation (with the trials being run independently for the two 

different semi-supervised models), Table 2 gives the average accuracy for several values of the scale 

factor. 

 

Table 2 

Results from 100 trials of k-fold cross-validation for unlabeled data scale factor (0=no weight given 

to unlabeled data; 1=equal weight given to unlabeled and labeled data).  Averages computed on the 

64 labeled examples over the 100 trials. 

 Entropy Regularization Entropy Regularization  

plus VAT  

Unlabeled Data 

Scale Factor 

Average 

Correct 

Average 

Accuracy 

Average 

Correct 

Average 

Accuracy 

0.00 55.85 0.873 55.86 0.873 

0.01 56.27 0.879 56.67 0.885 

0.05 56.39 0.881 57.31 0.895 

0.10 56.50 0.883 57.41 0.897 

0.25 55.94 0.874 56.84 0.889 

1.00 55.51 0.867 54.04 0.844 

 

The results in the table show the best performance for both models for the scale factor 0.1, which, 

in the case of entropy regularization plus VAT, gives a roughly 2.4 percentage point increase in 

accuracy over the fully supervised model (scale factor 0).  Also, note that giving too much weight 

to the unlabeled data appears to degrade the performance of the classifier, with the lowest accuracy 

reached for the scale factor 1, again for both models. 

 

 

7. Discussion 
 

We have studied the various learning patterns that students exhibit while working in the adaptive 

learning mode of the ALEKS system.  After developing a measure for the steadiness of a student 

with respect to informative time-dependent variables, we classified a sample of the students into one 

of four different learning behaviors.  We then combined these labeled students with the large amount 

of unlabeled students and built two different semi-supervised machine learning models.  Using only 

a small set of carefully chosen and engineered features, we saw that the neural network model was 

able to separate and classify the unlabeled students in an intelligent and intuitive manner. 

Practically speaking, classifying and differentiating the students in the ALEKS system based 

on their learning patterns is an important step in ensuring that students are having an optimal learning 

experience.  If such information can be quickly and effectively communicated to the instructor, 

corrective intervention can be performed. For instance, a student whose learning stalls will benefit 

from a diagnostic of the possible cause by the instructor. Similarly, a student whose learning is 

suspected to have been performed by someone else will deserve closer scrutiny from the instructor. 

Finally, such information can also be used to improve the ALEKS system itself, where students who 

are struggling can be targeted for further review of the material.   

An actual implementation of such an alert system would also take advantage of the semi-

supervised aspect of the model, in which feedback from instructors can be used to retrain and 

improve the classifier.  Specifically, once a student is identified by the model as exhibiting one of 

the learning patterns, this can be communicated to the instructor.  The instructor can then verify that 

the label is correct, or even propose a different label if they disagree with the system’s classification.  



In either case, this new piece of labeled data can be fed back into the semi-supervised learning 

algorithm to improve the predictive performance of the model. 

 

 

Acknowledgements 

 
We would like to thank Ryan Baker for his helpful comments upon reading a previous version of 

this paper.  We would also like to thank Hasan Uzun for his input and suggestions during the course 

of this work. 

 

 

References 
 

Amershi, S., & Conati, C. (2009). Combining unsupervised and supervised classification to build user models 

for exploratory learning environments. Journal of Educational Data Mining, 1(1), 18-71. 

Botelho, A., Baker, R., & Heffernan, N. (2017). Improving sensor-free affect detection using deep learning.  

Artificial Intelligence in Education-18th International Conference, AIED 2017, pp. 40-51. 

Cawley, G., & Talbot, N. (2010). On over-fitting in model selection and subsequent selection bias in  

performance evaluation. Journal of Machine learning Research, 11, 2079-2107. 

Chapelle, O., Schӧlkopf, B., & Zien, A. (Eds.). (2006). Semi-Supervised Learning. Cambridge: MIT Press. 

Doignon, J.-P., and Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. International Journal of      

Man-Machine Studies, 23, 175-196. 

Falmagne, J.-C., Albert, D., Doble, C., Eppstein, D., & Hu, X. (Eds.). (2013). Knowledge Spaces:  

Applications in Education. Heidelberg: Springer-Verlag. 

Falmagne, J.-C., Cosyn, E., Doignon, J.-P., & Thiéry, N. (2006). The Assessment of Knowledge, in Theory  

and in Practice. In: Missaoui, R., Schmidt, J. (Eds.), Formal Concept Analysis: Foundations and  

Applications. Heidelberg: Springer-Verlag. 

Falmagne, J.-C., & Doignon, J.-P. (2011). Learning Spaces. Heidelberg: Springer-Verlag. 

Grandvalet, Y., & Bengio, Y. (2006). Entropy regularization. In Chapelle, O., Schӧlkopf, B., & Zien, A.  

(Eds.), Semi-Supervised Learning, pp. 151-168. Cambridge: MIT Press. 

Huang, X., Craig, S., Xie, J., Graesser, A., & Hu, X. (2016). Intelligent tutoring systems work as a math gap  

reducer in 6th grade after-school program. Learning and Individual Differences, 47, 258-265. 

Khajah, M., Lindsey, R., & Mozer, M. (2016). How deep is knowledge tracing? Proceedings of the 9th  

International Conference on Educational Data Mining, pp. 94-101. 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436-444. 

Oliver, A., Odena, A., Raffel, C., Cubuk, E. D., & Goodfellow, I. J. (2018). Realistic evaluation of deep semi- 

supervised learning algorithms. arXiv preprint arXiv:1804.09170. 

Miyato, T., Maeda, S., Koyama, M., & Ishii, S. (2018). Virtual adversarial training: a regularization method     

for supervised and semi-supervised learning. arXiv preprint arXiv:1704.03976. 

Mojarad, S., Essa, A., Mojarad, S., & Baker, R. S. (2018). Data-driven learner profiling based on clustering 

student behaviors: learning consistency, pace and effort. Proceedings of the 14th International 

Conference on Intelligent Tutoring Systems, pp. 130-139.  

Mitchell, T. (1999). The role of unlabeled data in supervised learning. Proceedings of the Sixth International  

Colloquium on Cognitive Science, pp. 103-111. 

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled  

documents using EM. Machine Learning, 39, 103-134. 

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., & Sohl-Dickstein, J. (2015). Deep  

knowledge tracing. Advances in Neural Information Processing Systems, pp. 505-513. 

Reddy, A., & Harper, M. (2013). Mathematics placement at the University of Illinois. PRIMUS, 23, 683-702. 

Taagepera, M., & Arasasingham, R. (2013). Using knowledge space theory to assess student understanding of  

chemistry. In Falmagne, J.-C., Albert, D., Doble, C., Eppstein, D., & Hu, X. (Eds.). Knowledge  

Spaces: Applications in Education, pp. 115-128. Heidelberg: Springer-Verlag. 

Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC  

Bioinformatics, 7, 91. 

Xiong, X., Zhao, S., Vaninwegen, E., & Beck, J. (2016). Going deeper with knowledge tracing. Proceedings  

of the 9th International Conference on Educational Data Mining, pp. 545-550. 

Yang, Y., Leung, H., Yue, L., & Deng, L. (2012). Automatic dance lesson generation. IEEE Transactions on  

Learning Technologies, 5(3), 191-198. 

Zhu, X., & Goldberg, A. (2009). Introduction to Semi-Supervised Learning. Morgan & Claypool. 


