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Abstract. A large-scale simulation study of the assessment effectiveness of a particular instantiation of knowledge
space theory is described. In this study, data from more than 700, 000 actual assessments in mathematics using
the ALEKS (Assessment and LEarning in Knowledge Spaces) software were used to determine response proba-
bilities for the same number of simulated assessments, for the purpose of examining reliability. Several measures
of reliability were examined, borrowed from existing psychometric approaches, with an eye toward developing
measures for evaluating reliability for adaptive assessments. The results are compared to analogous results for
assessments having mathematics content overlapping that of the ALEKS assessment, and some consequences and
future directions are discussed.
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INTRODUCTION

Knowledge space theory (KST) is an approach to assessment and learning based on a combinatoric and
probabilistic model introduced around 1985 by Jean-Claude Falmagne and Jean-Paul Doignon (Doignon
and Falmagne, 1985). Since then, hundreds of peer-reviewed journal articles and several books have been
published on the subject, most notably the two monographs Doignon and Falmagne (1999) and Falmagne
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and Doignon (2011). A bibliographic database is maintained by Cord Hockemeyer at the University of
Graz in Austria:
http://liinwww.ira.uka.de/bibliography/Ai/knowledge.spaces.html .

ALEKS, which stands for “Assessment and LEarning in Knowledge Spaces,” is a web-based soft-
ware system based on KST that is designed to assess and instruct students in mathematics. The backbone
of the system is an adaptive assessment aimed at determining which specific mathematics topics a student
already knows and which she is ready to learn. A specialization of the ALEKS system—ALEKS Place-
ment, Preparation and Learning (ALEKS PPL)—has been developed to determine a student’s mastery of
high school-level mathematics, offer a recommendation for placement in a post-secondary mathematics
course, and remediate the student as needed.

In this paper, we examine reliability for the ALEKS PPL assessment, which is an adaptive assess-
ment. By reliability we will be referring to the test-retest repeatability of results for a student; highly
reliable scores are generally free from measurement error and would likely be roughly repeated if the
student took the assessment multiple times (assuming no learning or forgetting took place) (Thissen,
2000). We detail a study of reliability that introduces a new theoretical idea to KST, namely, the ‘layers
of a knowledge state’, as well as a novel simulation method based on this idea. The simulation is based
on data derived from more than 700, 000 actual ALEKS PPL assessments; students’ actual results are
compared to simulated ones, and reliability is measured in several ways. The measures of reliability
are borrowed from the area of psychometrics with the intention of eventual comparison to other adap-
tive assessments, both within and outside of KST. To the best of our knowledge, there is not a standard
approach within the artificial intelligence in education (AIED) or intelligent tutoring system (ITS) liter-
ature for measuring reliability for adaptive assessments. Our hope is that this study will contribute to an
eventual implementation of standard measures in the AIED community for doing so.

The outline of the paper is as follows. We begin with a summary of KST and descriptions of
some particulars of ALEKS PPL. This is followed by background information on measures of reliability,
along with an introduction to the reliability approach used in this study. We then give the details of the
simulation study and its results, and we conclude with a discussion of the consequences of the study and
possible directions for future research. There is also an appendix containing some theoretical results in
KST that provide additional background for our simulations.

BASIC CONCEPTS: KNOWLEDGE SPACE THEORY AND ALEKS PPL

Items, knowledge states, and the knowledge structure

At the core of KST is the concept of a ‘problem type’ or ‘item.’ ALEKS PPL has 314 items, each cover-
ing a discrete skill, concept, or granular topic from the high school mathematics curriculum. The items
cover areas such as whole number arithmetic, proportions and percentages, integer arithmetic, linear and
quadratic functions, polynomial and rational functions, exponentials and logarithms, and trigonometry,
among others. Table 1 shows some items in ALEKS PPL and an example of each. The full list of items
is available at the following link:
https://web.archive.org/web/20190206222221/https://www.aleks.com/highered/

http://liinwww.ira.uka.de/bibliography/Ai/knowledge.spaces.html
https://web.archive.org/web/20190206222221/https://www.aleks.com/highered/ppl/ALEKS_Placement_Problem_Types.pdf
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ppl/ALEKS_Placement_Problem_Types.pdf .

Table 1
Some items in ALEKS PPL

Item Example (instance) of the item
Writing a ratio as a Ann ran for president of the chess club, and she
percentage received 18 votes. There were 45 members in the club.

What percentage of the club members voted for Ann?
Mixed arithmetic oper- Evaluate 7

8
+ 1

4
÷ 6

7
.

ations with fractions Write your answer in simplest form.
Solving a compound Solve the compound inequality 3x+ 1 > 19 or 4x− 2 ≤ 6

linear inequality and graph the solution on the number line.
Finding an amount in A forest covers an area of 2200 km2. Suppose that each
a word problem on year this area decreases by 5.75%. What will the area
growth or decay be after 14 years? Use the calculator provided and round

your answer to the nearest square kilometer.
Sketching the graph of Graph the function y = 2 cos

(
3
4
x
)
. To draw the graph,

y = a sin(bx) or plot all points corresponding to x-intercepts, minima, and
y = a cos(bx) maxima within one cycle. Then click on the graph icon.

An item is actually a collection of examples, called instances, each focused on the same, narrow
topic, and designed to be equal in difficulty. Another instance of the item “Mixed arithmetic operations
with fractions” might ask the student to evaluate 3

4 −
1
6 ÷

2
5 instead of 7

8 +
1
4 ÷

6
7 . Each time the student is

presented the item, whether in an instructional setting or in an assessment, a different instance is chosen.
The ALEKS PPL items typically have open-ended answers, in the sense that the system avoids

multiple choice formats and instead uses answer input tools that mimic what would be done with paper
and pencil.

In addition to the concept of an item, two other vital concepts in KST are a ‘knowledge state’ and
the ‘knowledge structure.’ A knowledge state is a particular set of items that some individual could be
capable of solving correctly. The knowledge structure is a distinguished collection of knowledge states.
More precisely, denoting the set of all items by Q, a pair (Q,K) is a knowledge structure if K is a family
of subsets of Q containing all the knowledge states that are feasible, that is, that could characterize some
individual in the population. In other words, an individual whose knowledge state is K can, in principle
(discounting slips1 and lucky guesses), correctly solve all the items inK and would fail to correctly solve
any item not in K. In particular, K always includes the empty set (characterizing a student in the state of
complete ignorance) and the set Q (characterizing a student mastering all of the items).

In what follows, we often shorten the term “knowledge state” to simply “state.”
Typically in KST, including in the case of ALEKS PPL, the number of states in the knowledge

structure is much less than the number of subsets of Q. This is due in part to the inherent relatedness
of items in mathematics. For instance, some items are prerequisites required to master other items: It
would be very unlikely, or even impossible, for a student to have mastered some particular items without

1A slip is an accidental error (see e.g. Desmarais and Baker, 2012; Vie et al., 2017), often called a careless error in the KST
literature (see e.g. Falmagne and Doignon, 2011).

https://web.archive.org/web/20190206222221/https://www.aleks.com/highered/ppl/ALEKS_Placement_Problem_Types.pdf
https://web.archive.org/web/20190206222221/https://www.aleks.com/highered/ppl/ALEKS_Placement_Problem_Types.pdf


4 Doble et al. / Reliability Simulation Study

having mastered other particular ones. Assuming item b could not be mastered without having mastered
item a, all of the subsets of Q containing b but not a are absent from the knowledge structure; only those
subsets containing b that also contain a are candidates to be knowledge states. Formally, the knowledge
structure (Q, K) is constructed so as to satisfy the two axioms below, making (Q,K) a learning space
(Cosyn and Uzun, 2009; Falmagne and Doignon, 2011).

AXIOM 1: If K ⊂ L are two knowledge states in K, with |L \K| = n, then there is a chain of states
K0 = K ⊂ K1 ⊂ · · · ⊂ Kn = L such that Ki = Ki−1 ∪ {qi} with qi ∈ Q \Ki−1 for 1 ≤ i ≤ n.

AXIOM 2: If K ⊂ L are two knowledge states in K, with q ∈ Q \K and K ∪ {q} ∈ K for some item
q, then L ∪ {q} ∈ K.

These axioms are designed to be sensible from a pedagogical standpoint. Axiom 1 requires that, if the
state K of the student is included in some other state L containing n more items, then there is a sequence
of items q1, . . . , qn that are learnable one at a time, leading the student from state K to state L. Axiom
2 requires that, if item q is learnable from state K, then it is also learnable from (or already learned in)
any state L that includes K, so that knowing more does not make one less capable of learning something
new.

These and similar considerations are employed in the construction of the knowledge structure. In
particular, data from past assessments are used to identify and verify the prerequisite relationships be-
tween the items. Ensuring that the knowledge structure contains accurate and realistic knowledge states
is an important process on which the effectiveness of the ALEKS PPL system rests; while this pro-
cess will not be detailed further here, the reader is encouraged to see Koppen and Doignon (1990) and
Falmagne and Doignon (2011) for more thorough treatments of building the knowledge structure, and
Falmagne et al. (2013) and Reddy and Harper (2013) for investigations of the accuracy of the knowledge
structure.

For ALEKS PPL, |Q| = 314 (there are 314 items in all), but the number |K| of states in the
knowledge structure is considerably smaller than 2314 ≈ 1094, the number of subsets of a set with 314
elements. More specifically, for ALEKS PPL, |K| is about 1023.

The fringes and layers of a knowledge state

Additional concepts from KST that are relevant for our discussion are the ‘outer fringe’ and the ‘inner
fringe’ of a knowledge state. The outer fringe of a state K is the set of all the items q not in K such
that K ∪ {q} is also a knowledge state. The interpretation is that the outer fringe of a student’s state
is made up of the items the student is ‘ready to learn.’ The inner fringe of a state K is the set of all
the items q in K such that K \ {q} is also a knowledge state. That is, the inner fringe is made up
of the items representing the ‘high points’ of the student’s competence. A critical theorem (Theorem
4.1.7 in Falmagne and Doignon, 2011) says that, in a learning space, the knowledge state of a student
is completely determined by the inner fringe and the outer fringe of the state. Expressing a state in
terms of its fringes can be very efficient, as the fringes often contain many fewer items than the state
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does. More importantly, the fringes give significant information for instruction, which is an important
aspect of ALEKS PPL, but which is not described in much detail in this paper. See instead section 1.2 of
Falmagne et al. (2013) in this regard.2

For the current study, we introduce the notions of ‘outer layer’ and ‘inner layer’ of a set of items.
For any item q ∈ Q, let Kq denote the family {K ∈ K | q ∈ K}. The surmise relation - is a relation on
Q defined by

q - r ⇐⇒ Kq ⊇ Kr. (1)

It is easily shown that, if (Q,K) is a learning space, then the surmise relation is a partial order (that is,
reflexive, antisymmetric, and transitive). We define the outer layer Sol of a subset S of Q as

Sol = {q 6∈ S | ∀r 6∈ S, r - q ⇒ r = q}.

The outer layer of S is thus the set of the minimal items with respect to the restriction of - to Q \ S.
Similarly, we define the inner layer Sil of a subset S of Q as

Sil = {q ∈ S | ∀r ∈ S, q - r ⇒ r = q}.

The inner layer of S is thus the set of the maximal items with respect to the restriction of - to S. We
define recursively the nth outer layer Koln of a state K as

Kol1 = Kol,

Koln = (K ∪
n−1⋃
i=1

Koli)ol if n ≥ 2.

Similarly, we define the nth inner layer Kiln of K as

Kil1 = Kil,

Kiln = (K \
n−1⋃
i=1

Kili)il if n ≥ 2.

It follows immediately from the definition of outer layer that, for any state K and any item q 6∈ K, there
is a natural number n such that q ∈ Koln . Moreover, the outer layers of K are order-preserving with
respect to the surmise relation: for all q, r 6∈ K, with q ∈ Koli and r ∈ Kolj ,

q - r ⇒ i ≤ j.
2As pointed out by a reviewer, the reader will likely be familiar with Vygotsky’s ‘zone of proximal development’ or ‘ZPD’

(Vygotsky, 1978; Chaiklin, 2003). Insofar as the outer fringe items comprise the content the student is ready to learn and the
ALEKS PPL system provides instruction to help the student master this content, the outer fringe may be seen as an implemen-
tation of the notion of ZPD.
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Similarly, the inner layers of K are order-reversing with respect to the surmise relation: for all q, r ∈ K,
with q ∈ Kili and r ∈ Kilj ,

q - r ⇒ i ≥ j.

The exact relationship between fringes and layers is developed in the appendix.
The layers give a measure of the difficulty of an item for a particular student. For example, for a

student in state K, an item in the 3rd outer layer of K will tend to be further from the student’s grasp
than an item in the 1st outer layer. Similarly, an item in the 3rd inner layer of K will generally be more
solidly mastered by the student than one in the 1st inner layer. States containing many items (states that
correspond to advanced students) have few outer layers and many inner layers, while the opposite is true
for states containing few items. In ALEKS PPL, for most knowledge states, the sum of the outer and
inner layers of the state is about 18 to 20. As described in a later section, the layers are an important
component of our procedure for simulating student responses.

Uncovering the knowledge state: An assessment

The descriptions in this section borrow heavily from sections 1.3 and 8.7 of Falmagne et al. (2013). The
reader is referred also to chapter 2 and section 8.8 of Falmagne et al. (2013) for more details.

The goal of an ALEKS PPL assessment is to uncover, by efficient questioning, the knowledge
state of a particular student under examination. The assessment is adaptive, in that the choices of items
to be presented depend on the student’s previous answers. To begin, each of the knowledge states is
assigned a certain a priori likelihood: Data from previously administered ALEKS PPL assessments
are used to obtain an estimate of the distribution of knowledge states over the entire population, and
this (estimated) distribution serves as the starting point of the assessment. For the first question in the
assessment, an item p1 is chosen both to be informative about the student and appropriate as a first
question. The student’s answer is checked by the system, and the likelihoods of all the states are modified
according to the following updating rule: If the student gave a correct answer to p1, the likelihoods
of all the states containing p1 are increased and, correspondingly, the likelihoods of all the states not
containing p1 are decreased (so that the overall likelihood, summed over all the states, remains equal
to 1). An incorrect answer given by the student has the opposite effect, as then the likelihoods of all
the states not containing p1 are increased, and those of the remaining states are decreased. The exact
formula for the operator modifying the likelihood distribution will not be recalled here; see Doignon and
Falmagne (1999, Definition 10.10). It is proved there that the operator is commutative, in the sense that
its cumulative effect in the course of a full assessment does not depend on the order in which the items
have been presented to the student.3 If the student does not know how to solve an item, she can choose
to answer “I don’t know” instead of guessing. This results in a substantial increase in the likelihoods of
the states not containing the item, thereby decreasing the total number of questions required to uncover
the student’s state.

For the second question of the assessment, item p2 is chosen by a mechanism similar to that used
for selecting p1, and the likelihood values are increased or decreased according to the student’s answer

3This commutativity property is consistent with the fact that, as shown by Mathieu Koppen (see Doignon and Falmagne,
1999, Remark 10.11), this operator is Bayesian.
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via the same updating rule. Further questions in the assessment are dealt with similarly. In the course of
the assessment, the likelihoods of some states gradually increase. The assessment procedure stops when
either (i) 29 questions have been asked4, or (ii) there is no longer any useful question to be asked (all the
items have either a very high or a very low probability of being answered correctly). At that moment, a
few likely states remain and the system selects the most likely among them. Note that, because of the
probabilistic nature of the assessment procedure, the final state may very well contain an item to which
the student gave an incorrect response. Such a response is thus regarded as due to a slip.

Once the student’s knowledge state is obtained through the ALEKS PPL assessment, the state is used
to place the student into the appropriate mathematics course. To facilitate this placement, it is helpful
to summarize the state with a single number that can easily be interpreted by students and instructors;
the summary of choice is the student’s percentage score, which is the percentage of the 314 items that
are in the student’s state (that is, the cardinality of the student’s state divided by 314 and multiplied by
100%). Based on the percentage score, placement into a particular course can be recommended for the
student (see Table 4 for an example of placement recommendations). Though it is clear that a good
deal of information about the student contained in the student’s knowledge state is lost when the state
is summarized with a single number, such a summary is useful to the post-secondary institutions using
ALEKS PPL for placement. The reliability study in the current work is based on this percentage-score
summary of the knowledge state. Though the instructional aspects of ALEKS PPL are not studied in this
paper, we note for the reader that the full (unsummarized) knowledge state is retained by the ALEKS
PPL system and is leveraged when the student works in the system’s ‘learning mode’, where she has the
opportunity to learn new material before re-taking the placement test.

RELIABILITY: BACKGROUND AND THE CURRENT STUDY

As described in the next section, a large study was done to examine reliability for the ALEKS PPL
assessment. In the absence of data from students taking the assessment multiple times (with no learning
in between), simulations were done. These simulations went roughly as follows. First, data from a large
number of ALEKS PPL assessments were collected for the purpose of obtaining response probabilities
(of correct, incorrect, and “I don’t know” responses) from the students’ knowledge states and aspects of
the ALEKS PPL knowledge structure. Then, using these probabilities, new assessments were simulated
for each student. Comparisons of the simulation results to those of the original assessments give a picture
of the assessment’s reliability, that is, the degree to which the results are free from measurement error.

How this reliability should be measured seems an open question. Our search through the AIED
and ITS literature did not yield any peer-reviewed studies of a similar nature to the current work. Thus,
to the extent of our knowledge, there is not a standard approach within the AIED and ITS literature
for measuring reliability for adaptive assessments. Because of this, we instead turn to the specific area

4The assessment actually includes up to 30 questions after the addition of a randomly chosen ‘extra problem’ used for
testing purposes, the details of which are explained in a later section. This number of questions strikes a balance between the
need to gather enough information about the student’s knowledge state and the possibility of overwhelming the student with
too many questions. Regarding the latter concern, see Matayoshi et al. (2018) for evidence of a “fatigue effect” experienced by
students in ALEKS assessments.



8 Doble et al. / Reliability Simulation Study

of psychometrics for inspiration. In classical test theory, the measurement error (the standard error of
measurement, or SEM) is estimated from the variance of the observed scores and some estimate of test-
retest correlation (Green et al., 1984). Such an approach, however, is based on the assumption that the
measurement error is the same for all students, regardless of ability. This dubious assumption is avoided
in item response theory (IRT) (see, e.g., Green et al., 1984; Thissen, 2000), for which the SEM is obtained
via the information function, giving an error estimate for each value of the ability variable (Weiss, 2011).
However, how best to present measures of reliability for IRT and to compare them across studies remains
an area of research (e.g., Dimitrov, 2002; Weiss, 2011; Woodruff et al., 2013).

The situation is especially murky when it comes to computerized adaptive testing (CAT), for which
a test may differ in content (differ in the questions given) based on the test-taker’s performance. Such
adaptive content presents additional difficulties, as many common techniques for measuring reliability
rely on having a fixed set of test questions; examples of these techniques include the split-half method
(Zhu and Lowe, 2018) and Cronbach’s α (Cronback, 1951). What is widely accepted for CAT is that,
as long as the test’s stopping rule is not determined directly by the error variance (Green et al., 1984),
estimating measurement error based on the test score is preferred over having a single, overall error
estimate (Green et al., 1984; Nicewander and Thomasson, 1999; Thissen, 2000; Weiss, 2011; ACT,
2012). This means having a conditional standard error of measurement, or CSEM, is preferred.

Turning to KST, in this study we have developed an original approach to measuring reliability for
an assessment such as ALEKS PPL. The approach contains three key features. First, the percentage
score is used. As mentioned, the outcome of an ALEKS PPL assessment is a knowledge state—the set
of items the student is purported to have mastered—and this knowledge state is then used to compute a
percentage score for placement purposes. While it is true that, in comparison to the actual knowledge
state, the percentage score represents a loss of information, we believe that using the percentage score
is appropriate in the study of reliability for ALEKS PPL, as it is this score that ultimately determines
the course placement of the student, and importantly, from this score standard measures of reliability
may be computed. Second, as mentioned above and described below, simulations are done to examine
the degree to which the percentage scores from actual assesments match the percentage scores from
subsequent (simulated) ones. Third, in the spirit of the background on reliability just presented, multiple
measures of reliability are given (rather than a single measure). One is a correlation between actual and
simulated scores, another is a conditional standard error of measurement giving an error estimate for each
of ten score categories, and a third is a measure of the consistency of the actual and simulated scores in
recommended course placement. These measures are detailed in the next section.

A STUDY OF RELIABILITY FOR THE ALEKS PPL ASSESSMENT

Preparation for the simulations

The data from 742, 851 ALEKS PPL assessments—one assessment from each of 742, 851 students—
were used as the starting points of the simulations aimed at evaluating reliability for the ALEKS PPL
assessment. Each of the students was enrolled or soon-to-be enrolled at a college or university and took
the assessment for the purpose of being placed in an appropriate mathematics course. Each of these
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assessments was the first assessment the student took in ALEKS PPL; the data set comprises all such
first-time placement assessments taken via ALEKS PPL between March 2012 and March 2017. (Students
were able to take subsequent assessments in ALEKS PPL, but these subsequent assessments almost
invariably came after the student learned new material through the system’s ‘learning mode’ and were
not used for this study.) Roughly 85% of the assessments were taken by students of four-year colleges
or universities, and the remainder were taken by students at other institutions, such as two-year colleges,
with more than 400 institutions represented in all. Further demographic information about the students,
such as information regarding gender, age, or academic major, is not available. However, because these
placement assessments typically were required for all incoming students at their institutions, it is safe to
say that the demographics of the students in the data set reflect those of students at a large sample of two-
and four-year colleges in the United States.

As mentioned, the result of each ALEKS assessment is a knowledge state; it is assumed in this
study that a student’s knowledge state is the one obtained from the actual ALEKS PPL assessment (not
a simulated one, and not obtained from any other information about the student). In what follows, we
will call this the student’s assessed state. Recall that a knowledge state is the set of items the student
is purported to have mastered, so that, discounting lucky guesses and slips, the student would answer
each item in her state correctly, and she would answer each item not in her state incorrectly. Of course,
in practice, lucky guesses and slips may play a role, and they may vary based on the ability of the
student and/or the difficulty of the question for the student, both of which should be modeled in the
simulations. To this end, first each student was placed in one of ten categories based on the number
of items in his assessed state. We will call these ten categories knowledge categories. The knowledge
categories were based on 10 intervals of equal width, so that the first category contained percentage
scores of 0% to 10%, the second category contained percentage scores of 10% to 20%, etc. Then, for
each knowledge category, probabilities of the respective responses of correct, incorrect, and “I don’t
know” were estimated, conditioned on the layer of the item relative to the student’s assessed state.

The following procedure was used to obtain these probability estimates. In each assessment, an
extra problem was selected uniformly at random from all of the available items. The student was then
presented this extra problem as a typical question during the assessment. While the student’s response
did not affect the result of the assessment, the data point from the response was grouped with data from
other students in the same knowledge category. The knowledge category was then further divided based
on the layer of the extra problem relative to the student’s assessed state, and the statistics for each of
these layers were compiled. For example, a student who had 100 items in his assessed state would
have mastered 100

314 ≈ 32% of the possible items, putting him in the 30%–40% knowledge category.
Students in this category were given an extra problem in their 3rd inner layer 8411 times during their
107,721 assessments; they answered correctly 6714

8411 ≈ 79.8% of the time, incorrectly 1528
8411 ≈ 18.2%

of the time, and “I don’t know” 169
8411 ≈ 2.0% of the time. (Note that these three fractions sum to 1,

as must be the case.) The value .798 (the proportion of correct responses) is plotted in Figure 1, and
the value .020 (the proportion of “I don’t know” responses) is plotted in Figure 2. More generally, the
figures show, for each of the ten knowledge categories, the estimated probabilities of a correct response
(Figure 1) and an “I don’t know” response (Figure 2) for each of the layers the students in the category
encountered. The estimated probability of an incorrect response is not shown directly in the figures but
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can be computed easily by adding the probabilities of a correct response and an “I don’t know” response,
and then subtracting the sum from 1.

It is worth noting the similarity between the plots in Figure 1 and the sigmoid item characteristic
curves of IRT (see, for instance, Hambleton et al., 1991). The interpretation, however, is very different.
In IRT, both students and items are located on a unidimensional latent trait θ, measuring the “ability” of
the former and the “difficulty” of the latter. The probability that a student of ability θs gives a correct
response for an item of difficulty θi is then a sigmoidal function of (θs− θi). In the plots in Figure 1, the
probability that a student in knowledge state Ks gives a correct response for an item i is a function of the
layer of i relative to Ks.

The simulations

Using the information in Figures 1 and 2, a total of 742, 851 simulated assessments—one for each of the
students in the study—were run. For each question of a simulated assessment, the student’s simulated
response (correct, incorrect, or “I don’t know”) was chosen based on the knowledge category of the
student’s assessed state, the layer relative to the assessed state of the item chosen for the question, and
the probabilities in Figures 1 and 2. For example, suppose a student’s assessed state, K, fell into the
30%–40% knowledge category, and that in the simulated assessment for this student, an item was chosen
that was in the 3rd inner layer ofK. Then the simulated response would be correct with probability .798,
incorrect with probability .182, and “I don’t know” with probability .020; see Figures 1 and 2 and the
comments above. Each simulated assessment was run according to the procedure described in the section
“Uncovering the knowledge state: An assessment”. Since the questions for the simulated assessment
were chosen according to this adaptive procedure (and were not chosen based on the questions for the
student’s actual assessment), it was very likely that the set of questions for the simulated assessment was
different from the set of questions for the actual assessment. A knowledge state was obtained at the end
of the simulated assessment, and this state will be called the student’s simulated state.

Rarely, the situation occurred in a simulation for which there were not enough data points on which
to base the student’s response probabilities, given the student’s knowledge category and the layer of the
item relative to her assessed state. In such a case, response probabilities from the nearest layer for that
knowledge category were used.5

An important consideration for the methodology described above is the possible bias introduced by
using the same 742, 851 assessment states for both estimating the response probabilities and running the
actual simulations. We address this issue in the Discussion section.

Before turning to the results of the assessment, we note that, among the 742, 851 students in the
study, there were 729, 398 assessed states held. Of the 15, 496 students whose assessed state was shared
by two or more students, nearly one-third had the empty state (the state with no items in it) as their
assessed state. So, it was rare for non-empty states to be shared by two or more students to begin the

5Alternatively, generalized logistic functions (also known as Richards’ curves; see Richards, 1959; Lei and Zhang, 2004)
could have been fit to each of the plots in Figures 1 and 2, and then used to estimate the response probabilities. This approach
was examined and its effect was negligible. There was essentially no difference between the results from this approach and the
results reported below.
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Fig.1. For each knowledge category, proportion of correct responses to the extra problem as a function of the layer.
The outer layers are in decreasing order, followed by the inner layers in increasing order. Only values with 500 or
more data points are plotted.



12 Doble et al. / Reliability Simulation Study

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 0%-10% category

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 10%-20% category

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 20%-30% category

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 30%-40% category

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 40%-50% category

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 50%-60% category

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 60%-70% category

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 70%-80% category

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 80%-90% category

15 10 5 ← outer | inner→ 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0 90%-100% category

Fig.2. For each knowledge category, proportion of “I don’t know” responses to the extra problem as a function of
the layer. Only values with 100 or more data points are plotted.
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simulations. As a consequence, the results of the simulations give an idea of the repeatability of the
ALEKS PPL assessment for a variety of the possible outcomes of the assessment.

Results

Recall that the outcome of an ALEKS PPL assessment is the set of items the student is purported to
have mastered, and that this set of items is converted to a percentage score for the purpose of placing
the student in an appropriate mathematics course. (The percentage score is the percentage of the 314
possible items the student has in his state.) We begin the analysis of the results of the simulations by
examining the degree to which the percentage scores for the assessed states (the assessed scores) match
the percentage scores for the simulated states (the simulated scores). Table 2 shows some summary
statistics for these percentage scores.

Table 2
Summary statistics for the percentage scores

Assessed Simulated
scores scores

N 742, 851 742, 851

Mean 50.5 50.6 Pearson correlation, r
Median 50.0 48.4 (assessed score versus simulated score):

S.D. 24.1 24.5 .958

Min. 0.0 0.0
Max. 100.0 100.0

We see that the summary statistics are similar for the assessed scores as for the simulated scores.
The Pearson correlation, r = .958, relating the assessed and simulated scores is high.6

Figures 3 and 4 give a more detailed picture. These figures show, for each of the ten knowledge
categories, the distributions of the differences

(student’s simulated score) – (student’s assessed score).

The figures also show, for each distribution, the number N of students in the category and an estimate of
the conditional standard error of measurement (CSEM). As is typically done, we computed the CSEM
as the root-mean-square error √√√√ 1

N

N∑
i=1

e2i

where the error ei is the difference between the simulated and assessed scores of student i. As men-
tioned above, the CSEM is a recommended measure for reliability for an adaptive test (Green et al.,

6Borrowing a measure from classical test theory, we also note that the standard error of measurement (Green et al., 1984)
may be estimated, in units of percentage score points, as

S.D.
√
1− r ≈ 24.1

√
1− .958 ≈ 4.94.
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1984; Nicewander and Thomasson, 1999; Thissen, 2000; Weiss, 2011; ACT, 2012). It has the important
characteristic of estimating error at multiple test scores (rather than giving a single error estimate). In
our case, the CSEM estimates the variability (error) in the assessment’s percentage score based on the
knowledge category. For convenience, the CSEM values from Figures 3 and 4 are shown in Table 3.

Table 3
Conditional standard errors of measurement. The 0%–10% interval is left and right inclusive. The other intervals
are left exclusive and right inclusive.

Knowledge CSEMcategory
0% – 10% 3.3%

10% – 20% 5.2%
20% – 30% 5.6%
30% – 40% 5.8%
40% – 50% 7.2%
50% – 60% 8.7%
60% – 70% 9.1%
70% – 80% 8.1%
80% – 90% 6.3%
90% – 100% 5.3%

It is typical to consider CSEM values as determining intervals into which the student’s score would
be estimated to fall, namely, it would be estimated that the student’s score would lie within one CSEM
of the assessed score approximately 68% of the time, were the student to re-take the assessment many
times (without a change in the student’s knowledge state).

The CSEM is used to capture possible differences in variability across the span of possible scores,
rather than to assume the same variability for each score. Examining this in Table 3 and in Figures 3
and 4, we see that the CSEM values range from about 3.3 percentage score points (for the 0%–10%
knowledge category) to about 9.1 percentage score points (for the 60%–70% knowledge category). We
also see that these CSEM values gradually but consistently increase from the first knowledge category
(the 0%–10% category) to the seventh (the 60%–70% category), then decrease to the final category (the
90%–100% category). So, the greatest variability is seen in the middle to high categories, that is, for
percentage scores in the 40%–80% categories.

As previously mentioned, we are not aware of any reliability studies for adaptive assessments in the
AIED/ITS literature; thus, directly comparing the CSEM scores of ALEKS PPL to any other system is
difficult. Additionally, the documentation that does exist comes in the form of user manuals or unpub-
lished technical reports that, presumably, have not been peer-reviewed; furthermore, these documents
focus on IRT-based tests, of which the majority are not adaptive. However, with these caveats in mind,
we can extract some useful information from such comparisons. For example, while the CSEM values for
ALEKS PPL are greatest in the middle to high categories, this stands in contrast to some (non-adaptive)
assessments of secondary mathematics, including the ACT Explore assessment for eighth- and ninth-
graders (ACT, 2014, page 41); the end-of-course assessments in Algebra II and Integrated Mathematics
III for the Delaware Comprehensive Assessment System (DCAS) (American Institutes for Research,
2014, pages 10 and 11); and the end-of-course assessments in Algebra I and Algebra II for the State
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Fig.3. For each of the first five knowledge categories, distribution of the differences between simulated and as-
sessed scores. The root-mean-square error of the differences is reported as the conditional standard error of mea-
surement (CSEM). For readability, the 0%-10% category has been given a different scale on its vertical axis than
the other categories.
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Fig.4. For each of the last five knowledge categories, distribution of the differences between simulated and assessed
scores.
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of Texas Assessments of Academic Readiness (STAAR) (Texas Education Agency, 2016, Appendix B:
STAAR 2016 Raw Score to Scale Score (RSSS) Conversion Tables and Conditional Standard Error of
Measurement (CSEM), pages 23-24 and 34-35). These latter assessments have their smallest CSEM
values throughout the wide range of middle scores, and they have relatively large CSEM values as the
scores become extreme (very high or very low). A study for another non-adaptive assessment, the ACT
College Readiness Assessment (Woodruff et al., 2013, page 32), found small CSEM estimates for scores
in the middle of the range of possible scores, large CSEM estimates for scores slightly more extreme,
then small CSEM estimates for scores more extreme still.

While the above results are interesting, it should be emphasized that none of the aforementioned
assessments are adaptive. The closest comparison to ALEKS PPL we have encountered in a reliability
analysis comes from the ACT Computer-Adaptive Placement Assessment and Support System (COM-
PASS). COMPASS is an adaptive test that, similarly to ALEKS PPL, is used for placement purposes
in a college or university setting and covers a wide range of content (ACT, 2012). While not a perfect
comparison, as the COMPASS test uses multiple choice questions and consists of five separate subtests,
a relevant simulation study was perfomed in ACT (2012) to evaluate reliability. As described there, the
variability is analogous to ALEKS PPL in that the largest CSEM values for the COMPASS test are found
for scores near the middle of the range of possible scores; furthermore, each subtest of the COMPASS
has CSEM values that appear comparable in size and variation to those in ALEKS PPL (see ACT, 2012,
Part 3, pages 7-10). However, it should be noted that additional differences between COMPASS and
ALEKS PPL complicate the comparison. That is, while each COMPASS subtest asks fewer questions
than a typical ALEKS PPL assessment, the scope of the content covered in each subtest is also much
narrower.

For a final comment on Figures 3 and 4, we note that the distributions are relatively more symmetric
for the middle knowledge categories, especially the knowledge categories in the 20% to 70% range, and
are relatively less symmetric for the extreme knowledge categories, especially the 10%–20% and 90%–
100% categories. The asymmetries in extreme categories are likely due, in large part anyway, to floor
and ceiling effects.

Rather than examining variability from the standpoint of CSEM values for percentage scores, we
could instead look at variability in course placement. Consider Table 4, which shows the “cut scores”
giving recommendations for placement in college courses based on ALEKS PPL percentage scores.
(Each college or university may have its own cut scores. The default cut scores for ALEKS PPL are
being used here for illustration.)

According to these cut scores, for example, a student with a percentage score of 34% would receive
the recommendation to enroll in Intermediate Algebra.

Supposing each student were placed in a category based on her score and the Table 4 cut scores, the
assessed and simulated placement categories of the student are determined by her assessed and simulated
placement scores, respectively. Assuming the placement categories form an interval scale from 1 to 6,
Figure 5 gives, for each of the 6 categories, the distribution of the differences

(student’s simulated placement category) – (student’s assessed placement category).

Similarly, Table 5 reports the root-mean-square error for the distributions in Figure 5. The most
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Table 4
ALEKS PPL placement recommendations

Placement Cut score Course placementcategory
1 < 14% Basic Math/Prealgebra
2 ≥ 14% Beginning Algebra
3 ≥ 30% Intermediate Algebra
4 ≥ 46% College Algebra
5 ≥ 61% Precalculus/Business Calculus
6 ≥ 76% Calculus I

Table 5
For each placement category, root-mean-square error (RMSE) of the differences between simulated category and
assessed category

Placement RMSEcategory
1 .452

2 .537

3 .511

4 .691

5 .737

6 .458

variability is seen for placement categories 4 (College Algebra) and 5 (Precalculus/Business Calculus).
This is consistent with the results in Figures 3 and 4, which show that the most variability comes with
percentage scores in the 40% to 80% range. Note from Figure 5 that floor and ceiling effects are again
seen for the lowest category (Basic Math/Prealgebra, which is placement category 1) and the highest one
(Calculus I, which is placement category 6).

DISCUSSION

In the absence of currently recommended best practices in the AIED/ITS literature for measuring relia-
bility for adaptive assessments, we have started from some concepts borrowed from the area of psycho-
metrics and outlined a procedure for evaluating reliability for the ALEKS PPL assessment. In doing so,
we have summarized the results of the assessment with a single numerical score, allowing for the com-
putation of several measures of reliability. The knowledge state resulting from an ALEKS assessment
contains very detailed information about the student’s knowledge, and it is clear that much information is
lost by summarizing this knowledge with a single number. However, while this is a significant drawback,
the upside is that relatively standard measures of reliability can be used. Furthermore, though this matter
is not investigated directly in the current study, such measures may be general enough to be used for
many other adaptive assessments, including those that return a qualitative map of student knowledge (for
examples, see Lynch and Howlin, 2014; Desmarais and Baker, 2012; Falmagne et al., 2013; Vie et al.,
2017, and the present study) as well as those that employ numerical scores (such as assessments using
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Fig.5. For each placement category, distribution of the differences between simulated and assessed placement
categories.
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IRT; see, for example, ACT, 2012; Thissen, 2000; Nicewander and Thomasson, 1999; Vie et al., 2017).
Our analysis of the repeatability of the ALEKS PPL assessment rests on having a very large num-

ber of knowledge states represented—having many unique assessed states—among those being studied.
These knowledge states were collapsed into categories by cardinality, and a separate simulation was done
for each of the many states that occupied the category. A detailed analysis of results by category could
then be carried out. The decision to have ten knowledge categories, as opposed to some other number,
was based on the fact that having more categories meant a greater likelihood of not having enough data
from actual assessments from which to estimate certain probabilities for simulated responses, and hav-
ing fewer categories meant less of a chance to capture variety in competence among the population of
students.

The reader may wonder about possible bias introduced by using the full data set of 742, 851 ac-
tual assessments in computing parameters (that is, in computing the respective probabilities of correct,
incorrect, and “I don’t know” responses) and then using the states from these same assessments to run
the simulations. Here is an argument as to why this procedure does not bias the results of our simula-
tions. The parameters used in simulating student responses within a knowledge category were computed
exclusively using the extra problems. Each extra problem was chosen uniformly at random from the
complete set of 314 items, and as such was chosen independently of the questions and responses used
to compute the student’s assessed state and the corresponding knowledge category. Thus, the only de-
pendence between the knowledge category of the student and the response to the extra problem was the
underlying ability of the student, and we submit that this is the minimal amount of dependence required
in any test-retest situation.

Note also that, in contrast to the situations in which cross-validation or some other model validation
approach is usually recommended, we are not building a predictive model, nor are we running an opti-
mization over any of our parameters. That being said, to test our argument empirically we tried a hold-out
approach in which we used 100, 000 of the assessments in the data set for validation and the remaining
642, 851 for computing the parameters. The results were very similar to the ones reported above: The
Pearson correlation coefficient was identical to that reported above, and among the ten CSEM values,
five were identical to those reported in Table 3 above, four differed by 0.1% (for example, a value of
7.2% was obtained compared to a value of 7.1% in Table 3), and one differed by 0.2%. Taking this
validation approach even further, we observe that an application of leave-one-out cross-validation would
likely give results even more similar to those reported in Table 3.7

We now turn again to the results of the present simulation. The results suggest that the ALEKS PPL
assessment has variability, as measured by the CSEM values for the percentage scores, that varies by
knowledge category. The variability of the CSEM values by category is typical of assessments having
a similar level of mathematics content as that of ALEKS PPL. As mentioned, several such assessments
have their smallest error estimates—smallest CSEM values—for the middle range of possible scores,
while others have their smallest error estimates for the extreme scores. The ALEKS PPL assessment
seems to fall into the latter category, with the simulations indicating that ALEKS PPL has its greatest

7For an illustration of this, there were 186 correct-response probabilities estimated from the data, with an average sample
size for these estimates of 3941.0. So, in each step leave-one-out cross-validation would effectively remove exactly one data
point (out of an average sample of 3941.0) from exactly one of the 186 correct-response probability estimates.
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CSEM values for the middle to high percentage scores, especially those corresponding to placement in
College Algebra and Precalculus/Business Calculus. It is not clear to us the reason for this, and it is a
topic of current study. We can say that College Algebra and Precalculus have a good deal of overlapping
content, and that discriminating between them can be difficult. On the other hand, the CSEM values
for the highest percentage scores, corresponding to placement in Calculus I, are lower, giving higher
confidence that students placed in this category generally are being placed appropriately.

The outcome of an ALEKS PPL assessment contains a great deal of information about the student,
including the particular items the student is purported to have mastered and those she is most capable of
learning next. This information is put to use in the ALEKS PPL ‘learning mode,’ a central component
of ALEKS PPL. In the learning mode, the student practices items in her outer fringe, which are the
items she is deemed most capable of learning next. As the student makes progress in mastering these
items, ALEKS PPL updates her knowledge state accordingly and presents her with new items from her
updated outer fringe. This process allows the student to progress efficiently through the curriculum.
If the student is seeking placement in a more advanced mathematics course, she may, depending on her
school’s regulations, re-take the ALEKS PPL assessment before the term starts for the chance to improve
her standing. Leveraging the information in the knowledge state helps provide a smooth transition from
course placement to coursework.

The cardinality of the knowledge state—the measure used in the current study—is an especially
rough numerical summary of the knowledge state. Other numerical summaries may retain more infor-
mation about the state. For example, a score that is a weighted sum, with the weights based on the degree
to which items are useful in predicting success in future courses, may offer an improvement; see espe-
cially Reddy and Harper (2013) in this regard. Alternatively, note that, as described in the “Uncovering
the knowledge state: An assessment” section above, the ALEKS PPL assessment engine determines, for
each item, a probability the student has mastered the item. Rather than discarding these probabilities in
favor of all-or-nothing decisions about items being in or out of the knowledge state, the system could
instead report the probabilities, or some function of them, as the outcome of the assessment. Reliability
may then be measured by the correlation of these probabilities from one assessment to the next. Another
numerical summary that could be used for the purpose of examining reliability would be a set-theoretic
distance between knowledge states, such as the ‘symmetric difference’ (see e.g. Falmagne and Doignon,
2011). An examination of these and other measures, which depart from the score reporting currently
used in ALEKS PPL, is a possible topic of future work.
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APPENDIX

For completeness, we give the following results relating a knowledge state’s layers (a concept introduced
in this work) to that state’s fringes (an established concept in KST, e.g., Falmagne and Doignon, 2011).

Let (Q,K) be a learning space. We recall the definition of the surmise function σ. It is a mapping
from Q to 22

Q
defined, for all q ∈ Q, by

σ(q) = {C ∈ Kq | ∀S ∈ Kq, S ⊆ C ⇒ S = C}.

In other words, σ(q) is the family of the minimal states, with respect to set inclusion, containing q. These
minimal states are called the clauses of q. A fundamental result (Falmagne and Doignon, 2011) is that

K ∈ K ⇐⇒ ∀q ∈ K,∃C ∈ σ(q) such that C ⊆ K. (2)

The implication from left to right follows immediately from the definition of σ. The converse implies
that any union of clauses is a state. Koppen (1998) moreover showed that, for all q, r ∈ Q,

r ∈ ∩σ(q) ⇐⇒ r - q, (3)

where - is the surmise relation defined in Equation (1). Let KO and KI denote the outer fringe and the
inner fringe of state K, respectively. We show the following statements (i)− (iv) for any state K ∈ K.

http://tea.texas.gov/Student_Testing_and_Accountability/Testing/Student_Assessment_Overview/Technical_Digest_2015-2016
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(i) KO ⊆ Kol. Let q be an item inKO. Theorem 1 in Hockemeyer (1997) states that, equivalently,
there exists C ∈ σ(q) such that C \K = {q}. Suppose that there exists x 6∈ K such that x - q. Then
x ∈ ∩σ(q) and so x ∈ C. Thus x = q and q ∈ Kol.

(ii) KI ⊆ Kil. Let q be an item in KI and suppose there exists x ∈ K such that q - x and x 6= q.
As x belongs to the state K \ {q}, there exists C ∈ σ(x) such that C ⊆ K \ {q}. But q - x implies
q ∈ ∩σ(x) and so q ∈ C, a contradiction. So there is no such item x and q is a maximal item with
respect to - restricted to K. Thus q ∈ Kil.

A case of interest is when σ(q) is a singleton for all q ∈ Q. A learning space with this property is
called an ordinal learning space. If Cq denotes the single clause of item q, Equation (3) becomes

r ∈ Cq ⇐⇒ r - q.

(iii) In an ordinal learning space, KO = Kol. We only need to show the inclusion from right to
left. Let q be an item in Kol. Let x be an item in Cq \K. In particular, x - q, and so x = q since q is
minimal with respect to - on Q \K. We thus have Cq \K = {q} and q ∈ KO.

(iv) In an ordinal learning space, KI = Kil. We only need to show the inclusion from right to left.
Let q be an item in Kil. Let x be an item in K \{q}. From Equation (2), we have the inclusion Cx ⊆ K.
At the same time, q 6∈ Cx, otherwise q would not be maximal with respect to - on K. So Cx ⊆ K \{q}.
We can thus express K \ {q} as a union of clauses. So K \ {q} is a state and q ∈ KI .

Finally, let us observe that, since a learning space is closed under union, K ∪ KO is also a state,
since it is the union of all the states K ∪ {q}, where q ∈ KO. But we do not have in general that
K ∪ Kol is a state, unless the learning space is ordinal. As an ordinal learning space is closed under
intersection (Birkhoff, 1937), we have that K \Kil is a state in that case, since it is the intersection of
all the states K \ {q}, where q ∈ KI .


