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Abstract Many recent studies have looked at the viability of applying re-
current neural networks (RNNs) to educational data. In most cases, this is
done by comparing their performance to existing models in the artificial in-
telligence in education (AIED) and educational data mining (EDM) fields.
While there is increasing evidence that, in many situations, RNN models can
improve on the performance of these existing methods, in this work we take a
different approach. Rather than directly comparing RNNs with other models,
we are instead interested in the results when RNNs are combined with one of
these existing models. In particular, we attempt to improve the performance
of ALEKS (“Assessment and LEarning in Knowledge Spaces”), an adaptive
learning and assessment system based on Knowledge Space Theory, through
the use of RNN models. Using data from more than 1.4 million ALEKS as-
sessments, we first build an RNN classifier that attempts to predict the final
result of each assessment. After verifying the accuracy of these predictions,
we develop our stopping algorithm, with the goal of improving the efficiency
of the ALEKS assessment by reducing the total number of questions that are
asked. Based on this stopping algorithm, we give a comprehensive analysis of
the possible effects it would have on students. We show that the combination
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of an RNN with the ALEKS assessment can reduce the average assessment
length by over 26%, while a high degree of accuracy is maintained.

Keywords Recurrent neural networks · Adaptive assessment · Knowledge
Space Theory · Deep learning

1 Introduction

Over the last several years, deep learning techniques have achieved dramatic
breakthroughs in many scientific fields [30,44]. Arguably, the first of these
came in the area of computer vision [42], with subsequent advancements ap-
pearing in fields such as language modeling [18,43,56], speech recognition [32,
69], game playing [71,72], and machine translation [79]. Influenced in no small
part by these achievements, models and applications using neural networks
are moving into the education domain, with these concepts appearing in stud-
ies throughout the artificial intelligence in education (AIED) and educational
data mining (EDM) fields. In particular, because of the sequential nature of
many types of educational data, recurrent neural networks (RNNs) are being
used more frequently in the educational literature [5,37,39,68,81].

In comparison, there are also many longstanding and well-studied models
of learning and assessment that are used throughout the AIED field. These
include models and theories such as Bayesian Knowledge Tracing (BKT) [2,
15,84], Knowledge Space Theory (KST) [23,25,26], and Performance Factors
Analysis (PFA) [59]. These methods have been analyzed and vetted by a sub-
stantial body of research, and a large number of adaptive learning and assess-
ment systems in use are based, at least in part, on these frameworks [8,11,25,
34,48,60] (see also [1,17], and the references therein, for further examples).
Given the pervasiveness of these methods, a natural progression is to look at
the viability of using deep learning to improve on them. As such, much of the
recent work in the AIED field related to neural networks has focused on an-
alyzing their effectiveness by comparing their performance to that of various
existing methods and techniques.

For example, in the area of student modeling, [63] introduced an RNN-
based model of student knowledge that was compared and contrasted with
more traditional approaches, such as BKT. While the initial results seemed
promising, follow-up studies [40,77,80] revealed a more nuanced picture. Specif-
ically, [80] discussed issues with the data and methodologies in [63], with these
issues complicating the comparisons that were made. Additionally, both [40]
and [77] presented examples where the RNN model was matched, or even out-
performed, by models based on BKT and item response theory (IRT). These
results were synthesized in [78], which concluded that deep learning models,
while showing promise in the education field, are by no means guaranteed to
outperform other educational models. This conclusion is supported by subse-
quent work such as [49], which had BKT outperforming RNN models on one
measure, yet simultaneously performing worse on others.
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Several other examples exist of RNNs being applied to problems related to
student modeling and prediction. In [46], RNNs were used to model student
learning gains, and it was shown that the RNN models were more accurate and
efficient in comparison to BKT models. Another relevant study is [36], where
RNNs were applied to the task of making course grade predictions, based on
the student’s history of previous courses and grades. These predictions were
then used as part of a novel course recommendation system that generated
a suggested list of prerequisite courses for the student. Yet another example
is contained in [39], where RNNs were used to classify students into groups
based on their learning behaviors; the results indicated that the RNN models
were at least as good as the methods traditionally used for this task. Finally,
one additional study from this area is [52], where RNNs were used as part of a
model of student knowledge retention that extended and improved on a basic
forgetting curve.

RNNs have also been used for other topics, such as in recent studies of
models for sensor-free affect detection [5,37]. In these works, RNN models were
fed sequences of actions by students, and the models then used these actions
to classify students into various affective states. In comparison to previously
used techniques, [5] reported a significant overall improvement when applying
RNNs to affect detection; furthermore, while the results in [37] were more
mixed, they still showed a benefit to using RNNs.

While it is becoming clear that deep learning and RNNs have a place in
the AIED and EDM fields, the discussion in the preceding paragraphs demon-
strates that there are instances where the use of another model may be pre-
ferred. Motivated by these observations, the current work takes a slightly dif-
ferent approach. Rather than directly comparing and contrasting deep learning
with other AIED models, we are instead interested in the results when deep
learning is used in combination with one of these models. Specifically, ALEKS
(“Assessment and LEarning in Knowledge Spaces”) [54] is an adaptive learn-
ing and assessment system based on KST. At the core of the ALEKS system
is an adaptive assessment that aims to precisely and efficiently identify the
topics in an academic course that a student knows, as well as identify the
topics she is ready to learn next. Our goal is to augment the KST-powered
ALEKS assessment with the classification strengths of an RNN model.

The specific focus of our efforts in this study is ALEKS Placement, Prepa-
ration and Learning (ALEKS PPL), a specialized product that has been devel-
oped to offer recommendations for placing students in post-secondary mathe-
matics courses. In [50], an initial version of a stopping algorithm, also based
on an RNN classifier, was introduced to improve the efficiency of the ALEKS
PPL assessment. In this current work, we build on these previous results by
evaluating an updated version of the stopping algorithm. The changes to the
algorithm include a larger set of features for the machine learning classifier,
as well as the removal of certain restrictions that slightly hindered the per-
formance of the previous version. However, in comparison to [50], our main
contribution is a significantly more comprehensive and detailed evaluation of
the stopping algorithm and its various effects. Thus, in addition to a more
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in-depth analysis of the performance of the predictive models, we spend a
considerable amount of time attempting to understand the effects of the stop-
ping algorithm on students if it were to be operationalized; for example, we
look at the time that the algorithm can save students. Finally, we propose and
evaluate an alternative version of the stopping algorithm that is more flexible
and easier to maintain in a production environment.

The outline of the paper is the following. We begin with background in-
formation, where we give a brief introduction to KST and the KST-based
criteria currently used for stopping the ALEKS PPL assessment. We then de-
scribe our experiments and the RNN model building procedure. Based on the
RNN model, we define an updated stopping algorithm that we apply to our
test data, and we attempt to understand its effects with a comprehensive anal-
ysis of the results. Finally, we evaluate the aforementioned alternative version
of the stopping algorithm, and we compare and contrast the performance of
the two different versions of the algorithm.

2 KST, ALEKS, and the Current Stopping Rule

In this section we give a brief introduction to KST and the ALEKS assessment.
For more a detailed introduction to these subjects, we refer the reader to [25,
26]. In KST and ALEKS, an item is a problem type that tests a discrete unit of
the curriculum, with each item being composed of a collection of examples that
are designed to be equal in difficulty. A knowledge state is a set of items that
a student knows, that is, the student has the ability to solve. The knowledge
space is the collection of all such possible knowledge states. In general, the
number of knowledge states in the knowledge space is much less than the
total number of possible sets of items. This is because the items share specific
relationships that determine the collection of knowledge states. For example, a
knowledge state that contains an advanced item will necessarily contain more
elementary items that test concepts required for the mastery of that advanced
item.

Figure 1 contains a screen capture of an example math item titled “Intro-
duction to solving an equation with parentheses.” This item tests a student’s
ability to apply the distributive property and solve a linear equation. As such,
it is a prerequisite item for more advanced equation solving items. For exam-
ple, if a student knows an item with a name such as “Solving a linear equation
with several occurrences of the variable and distribution,” it stands to reason
that this same student is able to solve the problem in Figure 1, which covers
prerequisite concepts needed for this more advanced item.

The goal of the ALEKS assessment is to discover the student’s knowledge
state within the knowledge space. The assessment employs an adaptive query-
ing process, as the student’s previous answers affect the choice of the next
item to ask. Using this adaptive process, it attempts to identify the student’s
knowledge state with as few questions as possible. Among other things, the



A Stopping Algorithm for an Adaptive Assessment 5

Fig. 1 Screen capture of an ALEKS item titled “Introduction to solving an equation with
parentheses.” In addition to the problem statement, the screen capture shows the answer
input box; tools for inputting fractions and mixed numbers; and buttons for clearing the
answer box, undoing the last action, and obtaining help with the answer input tools.

assessment leverages the information contained in the knowledge space, such
as the prerequisite relationships, to assist with this process.

Given a particular assessment question, the student’s response falls into
one of three categories:

– student inputs a correct answer;
– student inputs an incorrect answer;
– student clicks on the “I don’t know” button.

Based on the student responses up to, and including, the current question, each
item is assigned an estimated probability that it is contained in the student’s
knowledge state. The probabilistic nature of the assessment lends the flexibility
that is needed to deal with careless errors and lucky guesses (see, for example,
Chapter 13 in [26] for further information). Using the probability estimates,
at all times the items under consideration are partitioned into the following
categories by the ALEKS system:

– items that are most likely in the student’s knowledge state (in-state);
– items that are most likely not in the student’s knowledge state (out-of-

state);
– the remaining items (uncertain).

The assessment terminates when the student’s knowledge state is precisely
identified; this happens when all of the items are classified as either in-state
or out-of-state, with no remaining “uncertain” items. Alternatively, to prevent
a student from having to answer too many questions, the assessment stops if
a predefined maximum number of questions is reached. In both cases, the in-
state items are returned as the best estimate of the student’s knowledge state.
Note that, because of the information contained in the knowledge space and
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the associated knowledge states, most items end by being classified as in-state
or out-of-state without having been directly asked.

There are 314 items in ALEKS PPL, covering material from elementary
mathematics to precalculus, and the ALEKS PPL assessment has a limit of 29
questions.1 While the items used in ALEKS PPL also appear in other ALEKS
products, they were specifically chosen for use in ALEKS PPL due to their
relevance for placement in college mathematics. The item score of the student
is simply the number of items that are in the student’s knowledge state (i.e.,
the in-state items) at the end of the assessment. The percentage score is the
ratio of the item score over 314 (the total number of items). From these scores,
ALEKS PPL recommends placement in a course. The default recommendation
is based on the cut scores in Table 1. Next to each of the cut scores we have
listed the corresponding course(s) from the typical sequence of math courses
in use at many U.S. colleges.

Table 1 ALEKS PPL placement recommendations

Placement Item Percent
Course placement

category Score Score

1 < 44 < 14% Basic Math/Prealgebra

2 ≥ 44 ≥ 14% Beginning Algebra

3 ≥ 94 ≥ 30% Intermediate Algebra

4 ≥ 144 ≥ 46% College Algebra

5 ≥ 192 ≥ 61% Precalculus/Business Calculus

6 ≥ 239 ≥ 76% Calculus I

Approximately 97% of ALEKS PPL assessments reach the maximum limit
of 29 questions and thus end with a number of uncertain items. There are
several reasons for this. To start, most ALEKS items have an open-ended free
response interface, and are thus prone to careless errors, or “slips,” during
an assessment (in comparison, “lucky guesses” are much less common). Such
careless errors, and the resulting misrepresentation of what the student knows,
affect the number of questions it takes to accurately identify the knowledge
state (see [62], and the references therein, for an enlightening discussion of
these issues in a related context). Further complicating the process of extract-
ing reliable information from student responses is that, as discussed in [51],
there is evidence that as an ALEKS assessment progresses, the behavior of
some students may change. For example, students may experience a type of
assessment fatigue, making them less likely to attempt to answer a question
later in the assessment, and thereby decreasing the chance that uncertain items
will be moved to the in-state category. Additionally, from a more theoretical
standpoint, the combinatorial nature of knowledge spaces presents difficulties
of its own when attempting to identify the knowledge state of a student. The

1 Students actually answer up to 30 questions when accounting for a randomly chosen
question asked during the assessment and used for validation and other statistics.
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number of states in a knowledge space typically grows exponentially as a func-
tion of the number of items; since many knowledge spaces used in practice
contain several hundred (or even over a thousand) items, counting the exact
number of states quickly becomes an intractable problem. For example, in the
specific case of the knowledge space used for ALEKS PPL, the number of
states is estimated to be on the order of 1023.

While the previous paragraph describes several reasons that explain why
precisely identifying a student’s knowledge state is not an easy problem, the
adaptive and probabilistic nature of the ALEKS assessment allows it to deal
appropriately with the challenges arising from both the open format of the
items and the students’ shifting behaviors [25,26]. As for the combinatorial
difficulties, it must be noted that, if the assessment stops before removing all
the uncertain items, there are (potentially many) remaining candidates for the
actual knowledge state of the student. In particular, the in-state items can be
viewed as a lower bound on the items the student knows, while the complement
of the out-of-state items is then the corresponding upper bound. In practice, it
turns out that the set of in-state items provides an accurate description of the
student’s standing by the time the assessment ends (see, for example, studies
evaluating the validity and reliability of the ALEKS assessment in [16,22,25]).

There is, however, a particularity of ALEKS PPL that distinguishes it from
other KST applications. The goal of the assessment here is not so much as iden-
tifying the detailed knowledge state of the student as simply gathering enough
information for an accurate placement in one of six categories. Building on
this idea, it is possible that the course placement recommendation for a stu-
dent can be identified before the full 29 questions of the assessment are asked.
Our goal is to take advantage of this fact and to develop a stopping algorithm
for the ALEKS PPL assessment that in many cases can, with high accuracy,
identify the appropriate course placement recommendation with fewer than 29
questions. To do this, we first build several machine learning classifiers that
aim to predict the final course placement recommendation for a student, based
on the (partial) information of the assessment up to a given question number.
Once this is done, we can use these classifiers to implement an actual algorithm
for stopping an ALEKS PPL assessment.

3 Experimental Setup

The data for our experiments consist of 1,449,625 ALEKS PPL assessments,
with each assessment being taken by a unique student for placement purposes
in a college or university setting (typically in their first year, but not always).
For this analysis, we use only full-length assessments consisting of 29 questions
(as mentioned previously, roughly 97% of ALEKS PPL assessments reach this
maximum number of questions). The assessments were taken during a time
period starting in March 2012 and ending in October 2018, and the distribution
of the course placement recommendations is given in Figure 2. After being
processed, the data used to train our models are sequential in nature, with
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Fig. 2 Relative frequency histogram of course placement recommendations from the
1,449,625 full-length assessments in our data set.

each assessment generating one sequence; each sequence consists of 29 steps,
with one step for each question on the assessment. Of the assessments in
the data set, 50,000 are randomly chosen and used for a held-out test set,
another 50,000 are randomly chosen and used for a validation set to tune
hyperparameters and compare several models, and the remainder (1,349,625)
are used for training our models. As is standard practice when applying deep
learning models to large data sets [65,73], we use a single partition of our
data into training, validation and test sets, rather than applying k-fold cross-
validation or a similar method. This is in part due to the computationally
expensive nature of training deep learning models, but it is also because of the
important fact that, with such a large test set, we can expect the results to
generalize to our full data set.

For our classification models, the target (ground truth) label for each se-
quence is determined by the course placement recommendation made by the
ALEKS system using the full 29 questions from the assessment. Formally, us-
ing the knowledge state returned by the ALEKS system after question n (i.e.,
the set of in-state items after question n), the student’s percentage score is
computed to find the recommended course placement based on Table 1; we re-
fer to this placement recommendation as Cn. In this context, our target labels
then correspond to C29. Thus, the results of the ALEKS PPL assessment can
be viewed as a multiclass classification problem with six different class labels,
one for each of the possible course placement recommendations. Under this
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framework, we are interested in building classifiers that can use only the first
n questions of the assessment, with n < 29, to reliably predict the course rec-
ommendation returned by the full-length assessment. Note that the purpose
of this work is not to validate the current course placement recommendations
made by ALEKS PPL; validity of the ALEKS system is investigated in other
works such as [16,25,66]. Instead, the goal of our study is to match the current
recommendations made by the full-length ALEKS PPL assessments.

As an aside, in addition to the classification model described in the previous
paragraph, during this research we also explored other models that estimated
how much the student’s percentage score would change during the remainder
of the assessment (rather than attempting to predict the final course place-
ment). This approach has some similarities with other stopping rules that
have been applied to student modeling. For example, works such as [38,41,
45,67] applied stopping rules based on whether the predictions from a student
model had stabilized. However, while this approach seemed promising initially,
its performance ultimately proved to be inferior to that of the classification
model that predicts the final course placement.

4 Models

For our recurrent neural network models, we use two different recurrent units:
gated recurrent units (GRU) [12] and long short-term memory (LSTM) units
[33]. We include both models in our experiments since there currently is not
a consensus that one architecture or the other gives superior performance,
as several studies and comparisons have not revealed a clear winner; these
include examples both within the education domain [5,37,39,68], as well as
from the broader machine learning community [14,83]. Both RNN models use
a softmax output function that assigns an estimated probability to each of
the class labels, and the cross-entropy loss is computed at each step in the
sequence (i.e., after each question in the assessment) using these probabilities.
Additionally, as a baseline comparison, we also build a set of logistic regression
(LR) classifiers, one for each question number, where each logistic regression
is trained only on the data up to that point in the assessment.2 To handle the
multiclass aspect of our problem, the logistic regression classifiers use a one-
vs.-rest approach, where a separate model is trained for each class label (in
comparison to a true multinomial logistic regression, the one-vs.-rest approach
gave better results on our validation set). Figures 3 and 4 contain graphical
representations of the models.

When building our models, we use two different methods for generating our
features. Our first method views the classification problem based on the actions
of the students during the assessment. Specifically, as our features we use the

2 We also experimented with a similar methodology for the RNN models. That is, rather
than building a single RNN model, we built separate models for each question number.
However, since the performance was very similar to that of the single RNN model, and due
to the extra complexities required by this method, we did not pursue this approach further.
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items asked and the responses given during the assessment, and we refer to
this set of features as the student-centered approach. For the student-centered
approach, we have three variables per item, with each variable representing
a possible outcome given a student response; recall that these responses can
take the form of a correct answer, an incorrect answer, or an “I don’t know”
answer. This approach requires a total of 3× 314 = 942 independent variables
to represent all the possible combinations of responses and items. For our RNN
models, each response is encoded in a different vector, with the n-th vector
containing the response at question n, and only the response at question n.
For example, if question 15 was answered incorrectly, the 15th vector contains
a “1” in the column representing an incorrect answer to the item asked at
question 15, and a “0” in each of the other 941 columns. Then, as we have 29
questions in each sequence, the entire set of features for an individual student
is contained in an array of size 29× 942.

Since the logistic regression models are unable to process sequential data,
the features for the student-centered logistic regression are slightly different
from those of the RNN models. That is, at question n the logistic regression
features include the response from question n, along with all of the previous
n − 1 responses; this means the feature vector has n nonzero components at
question n. These features are then used to train the logistic regression model
for question n; as mentioned previously, while the same RNN model is used
at all points in the assessment, we train separate logistic regression models for
each question number. Because of this, the logistic regression models are at
a relative disadvantage in comparison to the RNN models, as each individual
logistic regression is only trained on data up to that specific point in the
assessment. Contrast this with the RNN models, which are fed the entire
sequences of data when training; it seems plausible that this extra information
is used by the RNN models to improve their predictive accuracy.

Our second method uses the actual item categorizations of the ALEKS
assessment as features. Recall that at each point in the assessment an item is
categorized as being either in-state, out-of-state, or uncertain. Thus, using this
assessment-centered approach, we again require 3 × 314 = 942 independent
variables, in this case to represent all possible combinations of assessment
categories and items. The n-th vector contains the categorization of the items
by the assessment after question n. Specifically, each in-state item has a value
of “1” in its in-state column and a value of “0” in each of the out-of-state
and uncertain columns; each out-of-state item has a value of “1” in its out-
of-state column, and so on. Note that for this approach the RNN models and
the logistic regression models all use exactly the same features.

As discussed previously, it was shown in [51] that the response patterns
of students change throughout the course of the assessment; as one example,
it was mentioned that students may be more reluctant to attempt a problem
later in the assessment. Such evidence is what motivates the student-centered
approach, which attempts to use the specific responses of the student to pre-
dict the class label they are likely to end the assessment with. In comparison,
the ALEKS assessment takes the response of the student and, being adap-
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Fig. 3 Graphical depiction of the RNN model. The variable xi,j represents the j-th input
feature at question i, where the total number of features, given by n, is either 942 or 1884.
The value of pi,j in the output represents the predicted probability of class label j at
question i, and C29 is the ALEKS PPL course placement recommendation at the end of
the assessment (i.e., after question 29). While the RNN model generates unique predictions
after each step in the sequence, the target label (C29) used for computing the cross-entropy
loss is the same at each of these steps.

tive in nature, updates its expectation of what items the student knows (or
doesn’t know) and categorizes the items accordingly. This information from
the assessment system is lost when taking the student-centered approach, and
thus the assessment-centered approach makes for an interesting comparison.
Conveniently, it should be mentioned that each approach uses the same num-
ber of features (942), facilitating comparisons between the two. Additionally,
as an extra set of features that was not included in [50], we also evaluate the
performance when the assessment-centered and student-centered features are
combined (for a total of 1884 variables). Using a larger number of features
requires a correspondingly larger set of model parameters, exposing the model
to overfitting issues. However, given the large number of assessments in our
training data, we expect that any possible overfitting will be more than com-
pensated for by the added information from the combined set of features, thus
yielding the best performing model. As we will see shortly, this assumption is
correct, and leads to a slight improvement over the classifiers from [50].

5 Model Evaluation

All of the models are repeatedly trained on the 1,349,625 assessments in the
training set, while the results on the 50,000 assessments in the validation set



12 Jeffrey Matayoshi et al.

Input

Model

Output

Class label

x1,1
x1,2

...
x1,n

LR1

p1,1
p1,2

...
p1,6

C29

x2,1
x2,2

...
x2,n

LR2

p2,1
p2,2

...
p2,6

C29

· · ·

x29,1
x29,2

.

..
x29,n

LR29

p29,1
p29,2

...
p29,6

C29

Fig. 4 Graphical depiction of the logistic regression model. The variable xi,j represents the
j-th input feature at question i, where the total number of features, given by n, is either 942
or 1884. The value of pi,j in the output represents the predicted probability of class label j
at question i, and C29 is the ALEKS PPL course placement recommendation at the end of
the assessment (i.e., after question 29). In contrast to the RNN model, 29 separate logistic
regression classifiers are trained, one for each question number in the assessment.

are used to tune the various hyperparameters (with the held-out test set then
being used for the evaluation and analysis of our final models, beginning in
the next section). For each of the neural network architectures (i.e., LSTM or
GRU), the number of hidden layers, the sizes of the hidden layers, and the
learning rate are tuned on the validation set. We also experiment with the
usage of batch normalization [35], a method for normalizing the inputs of the
neural network layers that, in many cases, improves the performance of the
model [30,35,70]. To help prevent overfitting, in all of our RNN models we
apply early stopping [65] and dropout [28,73]; these regularization techniques
are commonly applied to neural networks, as they help improve the ability of
the models to generalize to new data [30]. For the logistic regression models,
the only tuned hyperparameter is the strength of the L2 regularization; most
likely due to the large amount of data in the training set, lower regularization
improves the performance, with the best performing logistic regression model
essentially removing the regularization.

The logistic regression models are trained using the scikit-learn [61] Python
library. As this research took place over a period of several years, we initially
built and trained our RNN models using a combination of Keras [13] and
Theano [74]; however, we switched to PyTorch [58] for the latter portion of
this work. To test out different combinations of hyperparameters for the RNN
models, we use an iterative approach, in which the results from previous train-
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ing runs are used to inform the choices of hyperparameters for subsequent runs.
Due to the relatively long training time, as well as the large number of hyperpa-
rameters, we use this manual process for tuning the hyperparameters instead
of more traditional techniques, such as grid search. On the validation set, we
experiment with models using anywhere from one to six hidden layers, and we
vary the sizes of the hidden layers from as little as a few hundred units, up to
a few thousand. For our hidden unit activation functions we exclusively use
rectified linear units (ReLU), and for all our models (both logistic regression
and RNN) we use cross-entropy loss.

For each classifier architecture, the best results from the performance on the
validation set are shown in Table 2, where the accuracy, Matthews correlation
coefficient, and log loss are reported for two different points in the assessment;
we show the results after question 15, which gives an idea of the performance
roughly halfway through the assessment, and after question 25, which high-
lights the performance near the end of the assessment. The Matthews corre-
lation coefficient, introduced in [53] and extended to the multiclass case in
[31], is a statistic for measuring the quality of a classifier. It performs well
with unbalanced data [6] and has been suggested as being more informative
in comparison to other measures such as the accuracy and F1 score [9,64].
To apply the Matthews correlation coefficient, we use the class with the high-
est probability estimate as the predicted class label, which is then compared
to the true class label (in the case of binary class labels, Matthews correla-
tion coefficient is actually equivalent to the phi coefficient). Also, as a point
of comparison for the classifiers, the “ALEKS” row reports the accuracy and
Matthews correlation coefficient if we were to use the student’s current course
placement (i.e., Cn) as defined by the in-state items at that time (after either
question 15 or 25).

While all of the classifier models perform relatively well, the RNN models
show small, but consistent, gains over the logistic regression models. Addition-
ally, while the assessment-centered model performs better than the student-
centered model in all cases, the best results are from the combined model. Also
of note is that the LSTM models seem to perform slightly better with both
the student-centered and assessment-centered features; however, the strongest
overall performance comes from the combined features using GRU hidden
units. In the latter case, the GRU models might be less prone to overfitting
due to their having fewer parameters than the LSTM models. Finally, the per-
formance of the ALEKS assessment, while comparable to the other models at
question 25, is notably worse at question 15.

The best performing RNN models consist of either two or three hidden
layers. While we trained models with more hidden layers, the added depth did
not improve the results, suggesting that a very “deep” representation of the
data is not necessary to get optimal performance. Note that this is seemingly
consistent, albeit in a slightly different context, with results from several stud-
ies [21,40,77,78] giving evidence of the relative lack of depth that is necessary
to build accurate student models. The combined features LSTM model in Ta-
ble 2 has an initial hidden layer with 1900 units and one additional hidden
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Table 2 Comparison of different classifier models and architectures. Results shown are
from the best performing models, as measured by the predictions applied to the validation
set.

Model
After question 15 After question 25

Accuracy Matthews Log loss Accuracy Matthews Log loss

ALEKS 0.648 0.579 — 0.921 0.905 —

Student-centered features:

LR 0.820 0.781 0.409 0.921 0.904 0.202

GRU 0.824 0.786 0.394 0.925 0.909 0.178

LSTM 0.827 0.790 0.388 0.931 0.917 0.165

Assessment-centered features:

LR 0.820 0.781 0.404 0.937 0.923 0.159

GRU 0.827 0.790 0.388 0.942 0.930 0.142

LSTM 0.828 0.791 0.387 0.943 0.931 0.140

Combined features:

LR 0.825 0.788 0.391 0.939 0.926 0.154

GRU 0.830 0.793 0.379 0.944 0.932 0.136

LSTM 0.830 0.793 0.381 0.943 0.931 0.139

layer with 1200 units, while the GRU model has an initial hidden layer with
1900 units and two additional hidden layers, each with 1200 units.

As the best results come from the models using the combined set of fea-
tures, we attempt to get a more precise measure of the differences in perfor-
mance between these models by using McNemar’s test [24,55]. In particular,
we use McNemar’s test to compare the accuracy values of the classifiers, as
this procedure is recommended when a single partition of the data is used for
training and evaluation (as opposed to a procedure that uses multiple parti-
tions, such as cross-validation or resampling) [20]. McNemar’s test evaluates
the difference in accuracy scores by looking at the examples for which one
model makes a correct prediction and the other makes an incorrect prediction;
the resulting test statistic follows a χ2-distribution with a single degree of free-
dom. For this analysis, we compare each of the three classifiers to each other
after both questions 15 and 25, for a total of six comparisons. Due to these mul-
tiple comparisons, we also apply the Benjamini-Yekutieli procedure [4], with
a threshold of 0.05, to control for false positives. Since each of our models are
trained and evaluated on the same data, we use the Benjamini-Yekutieli proce-
dure, instead of the more common Benjamini-Hochberg procedure [3], because
the former is more conservative and can be applied regardless of the type of
dependency that exists between the test statistics [4].3 The results are shown
in Table 3, where we can see that the differences in accuracy scores between
the RNN and logistic regressions models are always statistically significant;

3 It’s worth mentioning that the statistical significance results are unchanged if the
Benjamini-Hochberg procedure is applied instead.
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Table 3 Results from applying McNemar’s test to the predictions using the combined set
of features. The +/− columns show the number of examples from the validation set where
the prediction from the first classifier is correct and the prediction from the second classifier
is incorrect. Similarly, the −/+ columns show the number of times the first classifier is
incorrect and the second is correct. An asterisk (*) next to the p-value denotes a statistically
significant difference after applying the Benjamini-Yekutieli procedure with a threshold of
0.05.

Models
After question 15 After question 25

+/− −/+ χ2 p-value +/− −/+ χ2 p-value

LR, GRU 807 1026 25.93 �0.001* 499 763 54.81 �0.001*

LR, LSTM 969 1182 20.89 �0.001* 624 833 29.69 �0.001*

GRU, LSTM 633 627 0.02 0.888 397 342 3.95 0.047

however, the differences in the accuracy scores between the RNN models are
not significant.

6 Stopping Algorithm

Now that we have confirmed the accuracy of our classifiers, we can use the
predictions from these classifiers to implement a stopping algorithm for the
ALEKS assessment. The idea of the stopping algorithm, the full details of
which are given in Algorithm 1, is the following. We first identify potential
points at which to stop the assessment based on the confidence of the classifier.
That is, our first criterion is that the most confident predicted class label is
above a certain threshold, α. Then, to ensure that our classifier has at least a
minimal amount of data to work with, we also require that each assessment
has asked at least five questions before the stopping algorithm is activated.

In comparison to the algorithm outlined in [50], a couple of changes have
been made that, based on further experiments on our validation set, led to an
improvement in the performance of the stopping algorithm. First, we are not
requiring that Cn (i.e., the course placement recommendation after question n,
as determined by the student’s current percentage score) is equal to the classi-
fier’s predicted class label. As this requirement can be viewed as an ensemble
of the predictions from the classifier and the assessment, we initially believed it
would lead to better performance. However, in some cases the classifier would
return a very high predicted probability for the final course placement rec-
ommendation, but the previous version of the stopping algorithm would then
wait for the ALEKS assessment’s recommendation to match this prediction;
thus, removing this restriction allows these assessments to end earlier. The
second difference from [50] is that we are activating the stopping algorithm
after 5 questions, rather than 10. As before, this restriction on the previous
version was causing some assessments to continue longer than necessary, as in
many cases the classifier’s estimated probability was already very high before
reaching this minimum number of questions.
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Algorithm 1 Assessment stopping algorithm
Inputs:
α, stopping threshold probability
xn, the input features of the classification model after question n
P (k |xn), predicted probability of class k, k = 1, . . . , 6, after question n
Kn = arg maxk=1,...,6 P (k |xn); i.e., the most likely class after question n
C29, the recommended course placement after question 29 (based on computing the stu-
dent’s percentage score and applying the cut scores in Table 1)

Iterations:
for n = 5 to 29 do

if n == 29 then
Return C29

else if P (Kn |xn) > α then
Stop the assessment and return Kn

end if
end for

Output:
The predicted course placement recommendation

Once we have defined our stopping algorithm, we can next evaluate the
effect of the algorithm on the assessment’s performance using our held-out set
of test data. As measured by the values in Table 2, we saw in the previous
section that while the assessment-centered features gave consistent gains over
the student-centered features, the overall best performance came from the
combined features; thus, for this evaluation we exclusively use the combined
set of 1884 features. The effectiveness of Algorithm 1 will be evaluated on
both the average assessment length and the accuracy of the predicted course
placement recommendation as returned by the algorithm. Note that since, by
definition, the placement recommendation returned after question 29 is the
ground truth label, perfect accuracy would be obtained if no assessments are
stopped before question 29.

The first set of results from the held-out test data are contained in Figure
5, where we plot the accuracy of the predicted course recommendation versus
the average assessment length, for various probability thresholds (i.e., various
values of α). The first thing to note is that the GRU model seems to give a
small, but consistent, improvement over the LSTM model. In comparison, the
performance of the logistic regression model, while strong, is clearly behind
both of the RNN models. For example, at an accuracy of 0.99, the GRU
model has an average assessment length of about 20.2 questions, while the
logistic regression model has an average length of about 21.1 questions; at
an accuracy of 0.995, the average lengths are 21.3 and and 22.7 questions,
respectively. Additionally, at any accuracy rate of 0.995 or higher, the GRU
model is a minimum of 1.4 questions better than the logistic regression, with
the maximum difference being about 2.5 questions. It should be emphasized
that since the course placement recommendation can have a significant effect
on a student’s subsequent classroom experience, maintaining the accuracy of
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Fig. 5 Accuracy vs. average assessment length on held-out test data for the combined
features models listed in Table 2.

the predicted recommendation is extremely important. Thus, in evaluating the
performance of an actual implementation of the stopping algorithm, accuracy
values above 0.995 are the most relevant, and these are the values for which
the RNN models show the greatest gains over the logistic regression model.

Similar to our analysis in the previous section, we can compare the results
of our stopping algorithm to the current performance of the ALEKS assess-
ment by using the course placement recommendation after question n (i.e.,
Cn) as our prediction of the ground truth label. For example, if we stop ev-
ery assessment on the held-out test set after question 28, using C28 as the
predicted label results in an accuracy of 0.9795. Figure 6 shows the current
placement accuracy after questions 5 to 29 where, for comparison, we have
also included the results for the GRU model. We can see that there is a wide
gap in performance between the two models. For example, after 20 questions
we can see on the plot that ALEKS PPL has an accuracy of about 0.8; in
comparison, when the average assessment length of the GRU model is 20, the
corresponding accuracy is roughly 0.99. We thus observe a very large boost
in accuracy and efficiency when the information from the current state of the
ALEKS assessment is fed to the RNN classifier. Furthermore, the accuracy
values for the ALEKS placement alone when it is stopped early show that,
in many cases, the questions being asked at the end of the assessment are
relevant to the student’s final course placement. These results emphasize the
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Fig. 6 Accuracy of the ALEKS PPL assessment when stopped after specific question num-
bers. (While the x-value for each ALEKS PPL data point is technically an “average,” all the
assessments represented by this data point have the exact same length.) For comparison, the
performance of the GRU model with the combined set of features, using various threshold
values α, is also shown.

importance of our classifiers, which are able to effectively separate the assess-
ments that are still asking relevant questions from the ones that are no longer
gaining useful information.

We next look at the performance of the classifiers using a specific value of
α. Figure 7 contains a histogram of the assessment lengths after the stopping
algorithm is applied, using both the GRU and logistic regression models with
α = 0.99. We can see that the majority of the assessments stop early, with only
about 16.5% of the GRU assessments continuing for the full 29 questions; for
the logistic regression model, roughly 21.7% continue for the full 29 questions.
For these same models and α, Table 4 shows the results partitioned by the
actual (ground truth) classification label. The best results, in terms of both
assessment length and accuracy, are for the extreme labels 1 and 6, with the
average assessment length showing a substantial reduction in both cases. In
comparison, while still being acceptable, the gains are not nearly as large for
labels 4 and 5. It is worth mentioning that these results closely parallel what
was found in [22], where an evaluation of the reliability of the ALEKS PPL
assessment was performed. In this evaluation, it was shown that ALEKS PPL
has the least variability (or, equivalently, gives the most reliable results) for
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Fig. 7 Relative frequency histogram of assessment lengths after the stopping algorithm
is applied on the held-out test data, using the combined features, the GRU and logistic
regression models, and a threshold of α = 0.99.

labels 1 and 6, while having the greatest variability for labels 4 and 5. Thus,
it seems likely that this increased variability is a major reason for the weaker
performance of the stopping algorithm with labels 4 and 5.

Table 4 Stopping statistics by ground truth label for the GRU and logistic regression
models on held-out test data, using a threshold of α = 0.99.

Class label Sample size
GRU Logistic regression

Average length Accuracy Average length Accuracy

1 4357 17.48 0.9959 18.6 0.9970

2 8680 21.21 0.9944 22.23 0.9968

3 11108 21.89 0.9950 23.40 0.9947

4 7640 24.47 0.9908 25.71 0.9904

5 8259 25.34 0.9923 26.41 0.9932

6 9956 15.68 0.9971 17.35 0.9945

Total 50000 21.11 0.9943 22.42 0.9943

To further understand the results, we next look in more detail at the prob-
ability estimates returned by the GRU classifier after question 20. Figure 8
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shows histograms of the final item scores (i.e., the number of items classified
as in-state by ALEKS PPL at the end of the assessment), conditioned on the
model classification probabilities above certain thresholds; note that we in-
clude the results for all the probabilities above a given threshold, regardless of
whether or not the predicted class label is correct. For example, in the topmost
plot we show the histogram computed from all the assessments in our test set
for which the GRU classifier has a maximum probability greater than 0.8 at
question 20; the other plots then show the histograms based on higher proba-
bility thresholds. The vertical (red) lines represent the different item cut scores
given in Table 1, and from the figure we can see that the predictions with the
highest probabilities occur away from these cut scores; in other words, by the
time we reach the highest probability threshold of 0.99, hardly any item scores
remain near the red lines. This makes intuitive sense; if an item score ends
up being very close to a cut score, it is difficult for the classifier to know with
much certainty on which side of the cut score the final item score will fall.

Furthermore, from Figure 8 we can also see that the classifier assigns the
lowest probabilities to the predictions coming from the item scores correspond-
ing to course labels 4 and 5 (i.e., the item scores from 144 to 238). In particular,
raising the threshold to 0.99 results in a dramatic reduction of the number of
probabilities for labels 4 and 5 (well in excess of the relative sample sizes of
these categories in comparison to the other categories). Note that this corre-
sponds to the weaker results shown in Table 4 for these labels. As before, the
greater variability for labels 4 and 5 discussed in [22] seems to play a role here.

Next, we note that using a threshold of α = 0.99, there are 285 assessments
that are classified incorrectly by the GRU model. To get a better understanding
of these misclassifications, Figure 9 shows a histogram of the difference between
each item score and its closest cut score from Table 1. We can see that the
majority of the data points tend to cluster around the cut scores; that is, 149
of these misclassified assessments (about 52%) are within two items of a cut
score, and 222 assessments (about 78%) are within five items of a cut score.
With that in mind, it should be noted that, if an item score is within a handful
of items of a cut score, it is not clear which side of the cut score a student truly
should be placed. Further information would be needed to determine which
course placement is a better fit for the student.4

7 Assessment Duration

Building on the analyses in the previous section, we now attempt to under-
stand the effect of the stopping algorithm on one important aspect of the
assessment: the actual time required by each student to finish. Of the 50,000
assessments in our test set, we have access to the specific time spent on each

4 To help with issues such as this, the PPL product has an option for remediating students
who are not satisfied with their initial course placement. Thus, if a student falls short of a
desired cut score, they can take advantage of this option and retake the PPL assessment,
possibly placing into a higher course.
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Fig. 8 Item score histograms for the final state using all 29 questions, conditioned on the
GRU model classification probability at question 20. Vertical (red) lines correspond to the
cut-scores from Table 1.

question for 45,470 assessments; due to technical reasons (mainly consisting
of missing or corrupted data), we are unable to recover these data for the
remaining 4,530 students. To begin, the striped (blue) bars in Figure 10 show
the time distribution, in minutes, of these 45,470 assessments using all 29
questions. The mean and median durations are 93.6 minutes and 82.5 min-
utes, respectively. We can see from the figure that the distribution has a long
tail, with the maximum duration being about 442 minutes. The solid (green)
bars in Figure 10 then show the distribution of the time durations after the
stopping rule is applied, using the combined features GRU model with a value
of α = 0.99. Here, we can see that the distribution has been shifted to the
left, with the mean and median durations now being 70.1 minutes and 59.7
minutes, respectively. Thus, after applying the stopping algorithm, over half
of the students are able to finish the assessment in less than an hour, with the
average assessment duration being reduced by about 23.5 minutes.

Given that the distribution of the assessment times has many students
with very long durations, we next look at the effect of the stopping algorithm
on these extreme assessments. There are 3483 students who took longer than
three hours to complete the assessment; these students have a mean duration
of approximately 221.1 minutes. After applying the stopping algorithm, the
mean duration for these students drops to 149.8 minutes (with a mean of
19.4 questions), a decrease of over 71 minutes. Furthermore, the number of
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Fig. 9 Histogram of the difference between an item score and its nearest cut score from
Table 1, for the 285 assessments that are classified incorrectly using the GRU model and a
threshold of α = 0.99.

assessments longer than three hours drops to 1299 (a reduction by a factor of
≈ 2.7). Thus, we see that the stopping algorithm has an even more pronounced
effect on the students in the (right) tail of the distribution.

What is interesting about these extreme students is that the course place-
ment distribution is very different from the overall distribution shown in Figure
2. As shown in Figure 11, the distribution is skewed to the right, with roughly
54% of the students placing into the highest category and another 24% plac-
ing into the second-highest category. At the moment, we do not have a good
understanding of the reasons for this shift in the distribution, and our ability
to analyze the situation is complicated by limited access to data on the sub-
sequent course outcomes of these particular students. One view is that these
students are very methodical and thorough while taking their assessments.
That is, these are (possibly) students who are very motivated to place into a
high course, and because of this they take their time, double-check their work,
and only move on to the next problem when they are confident that they have
solved the question correctly. Note that this scenario has some similarities to
the findings in [57], where students were divided into clusters based on their
learning profiles in the ALEKS system; while the results focused mostly on
the learning aspect of ALEKS, as opposed to the assessment activity, it is
worth noting that the cluster of students who worked at the slowest pace, yet
simultaneously put in the most effort, ended with the highest scores. Another
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Fig. 10 Relative frequency histogram of assessment durations on the held-out test data.
Solid (green) bars represent the assessments with the stopping algorithm applied, using
the combined features GRU model and a threshold of α = 0.99. The striped (blue) bars
represent the durations from the full-length assessments using all 29 questions.

contributing factor to these long assessments is the fact that the highest per-
forming students are likely to encounter the most difficult material on the as-
sessment. This material can include topics such as trigonometry, and problems
from these topics can take substantially longer to work through in comparison
to the more elementary concepts.

A possible criticism of the above reasoning is that it doesn’t completely
fit with results from other studies specifically analyzing the response times of
students. For example, the students in [29] had significantly longer response
times on incorrect answers, in comparison to their response times on correct
answers, while the students in [76] who took longer to answer questions were,
on average, less successful; in other words, contrary to what we observe in
ALEKS PPL, in both of these studies a longer response time was associated
with weaker performance. One factor complicating this analysis is that the
decision of whether or not to proctor the ALEKS PPL assessment is made by
each individual institution, and it is possible that many of these assessments
are being taken by students at home without any supervision. Thus, in such
cases it would be feasible for some students to treat this as an “open book”
exam, thereby using outside resources, such as textbooks or internet searches,
to help find solutions to the assessment questions; the longer assessment times
could then reflect the extra effort the students spend searching for help on
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Fig. 11 Relative frequency histogram of course placement recommendations for the 3483
students in the held-out test data with full-length assessments longer than 180 minutes.

the assessment questions. Understanding more about the behavior of these
extreme students is currently the subject of ongoing research.

8 Effect on the Final State

The goal of our next analysis is to evaluate the effect of the stopping algorithm
on the knowledge state that is returned by the assessment. To that end, we
focus on the differences between (a) the state that is returned when the as-
sessments are stopped early and (b) the state from the full-length assessments.
This is an important analysis, as the ALEKS PPL product has an option for
remediating students who are not satisfied with their initial course placement,
with the goal for them being to retake the ALEKS PPL assessment after the
remediation and place into a higher course. In such cases, the knowledge state
serves as the starting point for the student’s remediation, and so the effect on
this knowledge state should be measured and quantified. To do this, we use
two different measures that are meant to quantify the amount of similarity
between two states K and L. First, we compute the size of the symmetric
difference of the two states, which is a measure that is commonly used within
KST to compare different states [26]. The symmetric difference is simply the
union of the two set differences K \ L and L \ K. Second, we compute the
Jaccard distance, which normalizes the size of the symmetric difference by the
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Table 5 Statistics grouped by ground truth label for the size of the symmetric difference
and the Jaccard distance between the state returned by the stopping algorithm and the
state from the full-length assessment. For this analysis, we use the combined features GRU
model on the held-out test data with a threshold of α = 0.99.

Class label
Symmetric difference size Jaccard distance

Mean Median SD Mean Median SD

1 7.4 6 6.5 0.28 0.22 0.26

2 7.6 5 8.1 0.11 0.08 0.11

3 7.1 5 7.9 0.06 0.04 0.06

4 5.6 4 7.4 0.03 0.02 0.04

5 4.8 2 7.0 0.02 0.01 0.03

6 21.1 17 17.6 0.08 0.06 0.06

size of the union of the states:

|K \ L|+ |L \K|
|K ∪ L|

.

(In the above formula, the symbol | · | represents the size, or cardinality, of
the given set.) The Jaccard distance computation returns a value from zero to
one, inclusive, where zero indicates the sets are equal, and one indicates the
sets are completely disjoint.

For our analysis, we use the results from the combined features GRU model
on the test set, with a threshold of α = 0.99. The results are shown in Table
5, where we can see some interesting contrasts between the two measures.
For example, while the symmetric difference values for label 1 are roughly
equivalent to most of the other labels, the Jaccard distance values are much
higher; in the latter case, this is because the Jaccard distance is computed
relative to the size of the state, and the label 1 states contain at most 43
items. Then, note that the symmetric difference values for label 6 are high,
but they are relatively small after being normalized with the Jaccard distance.
Additionally, students in this class are placed into the highest possible course
(Calculus) and do not need to use the remediation mode of ALEKS PPL; thus,
identifying their exact knowledge state is less critical.

Next, note that both the symmetric difference and Jaccard distance values
are lowest for classes 4 and 5. Recalling the results from the previous sections,
in which it was shown that the RNN classifier, as well as the overall stopping
algorithm, has the weakest performance for these class labels, we can assume
this is due to the fact that these assessments are not stopped as early as
the rest. Specifically, in Table 4 we see that the average assessment lengths
for labels 4 and 5 are roughly 24 and 25 questions, respectively, while the
remaining labels range from about 16 questions to 22 questions. Since the
stopping algorithm is less confident with assessments in categories 4 and 5, it
allows them to run longer, and in such a case the state returned by the stopping
algorithm is more similar to the state from the full-length assessment.
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9 Training with Short-Term Course Placement Recommendations

The results from the previous sections show that the proposed stopping al-
gorithm is both accurate and efficient, and that it can have a large positive
benefit on the ALEKS PPL assessment. However, the procedure used to de-
velop the stopping algorithm suffers from at least one drawback; namely, it
requires access to the course placement recommendation of the assessment
using all 29 questions, as this recommendation is used as the target (ground
truth) label while training the RNN models. The problem with this approach
is that if such a stopping algorithm were to be deployed to actual students, the
majority of these assessments would be stopped before 29 questions, and we
would no longer have access to the ground truth labels. According to Figure 7,
upwards of 80% of the assessments are stopped early and would thus be miss-
ing labels; this presents obstacles for continually evaluating the performance
of the stopping algorithm, or for further retraining of the RNN model.

One possible solution is to select a subset of assessments for which the
stopping algorithm is not used. From a purely technical standpoint, this is a
desirable procedure as it gives access to a set of labeled data that can be used
to evaluate and retrain the RNN classifier. In comparison, from the student
perspective this is suboptimal, as many students would lose the benefits of
the stopping algorithm; in this scenario the issues of fairness and equality are
significant and must be taken into consideration. To avoid this problem, an
alternative way to evaluate the performance of the stopping algorithm is to
directly study the outcomes of the course recommendations. That is, we can
measure the validity of the ALEKS PPL course placement recommendations
by looking at the performance of the students who enroll in the suggested
courses. This is currently employed as part of our standard procedure for
evaluating ALEKS PPL, and this practice could be applied to evaluate the
performance of the stopping algorithm. However, this approach has its own
drawbacks. For example, while looking at something like the pass/fail rates of
students can indicate if there is a systematic problem with the ALEKS PPL
recommendations, this information is not specific enough to use as the training
labels for individual assessments, as these rates can vary widely based on
factors such as the institution, course, or instructor. Thus, with this procedure
the ground truth labels are still missing.

In the remainder of this section we explore an alternative model that at-
tempts to address the issues discussed in the previous paragraphs. To obtain
this new model, the only change we make to our previous model is how we
select the target labels for the RNN. Rather than using the course placement
recommendations from all 29 questions as the target labels, we instead try to
predict the course placement on a shorter time scale. Specifically, at question
n we use the course placement recommendation given by the ALEKS system
at question n + k, where k ≥ 1, as our target label. This means that each
assessment now generates a sequence of N − k steps, where N is the length of
the assessment, as the remaining k questions no longer have target labels; note
that the features for these N − k steps are unchanged from before. Further-
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Fig. 12 Graphical depiction of the alternative RNN model using a value of k = 2. The vari-
able xi,j represents the j-th input feature at question i, where the total number of features,
n, is equal to 1884. The value of pi,j in the output represents the predicted probability of
class label j at question i. The target class label at question i is the ALEKS PPL course
placement recommendation Ci+k at question i+k. While our previous RNN models always
used C29 as the target label at each step in the sequence, in this model the target label
changes based on the question number. In this example with k = 2, the target label at
question i is equal to the ALEKS PPL course placement recommendation from question
i+ 2.

more, we do not need to make any additional changes to our RNN model, or to
Algorithm 1 (other than adjusting the thresholds, which we discuss shortly);
once we have trained our RNN model, the application of the stopping algo-
rithm works as before. Figure 12 contains a graphical representation of this
new model.

The intuition behind this approach is the following. Suppose the assessment
is currently at question n. If the RNN model is very confident when predicting
the course placement recommendation for question n + k, this can be inter-
preted as evidence that the assessment has stabilized and can be stopped.
Although we would expect at least some drop in accuracy in comparison to
having access to the course recommendation using all 29 questions, the upside
to this approach is that it is easier for us to obtain access to the ground truth
labels for a model that has been deployed to production. That is, rather than
having to let a subset of assessments run the full 29 questions, we only need
to let this subset of assessments continue for an extra k questions, where we
assume that k is a small number (under this assumption, it may even be fea-
sible to let every assessment continue for an extra k questions); as we will see
shortly, k = 2 is a reasonable value.
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Additionally, with this new approach, since the prediction at question n
only needs to be evaluated against the label at question n + k, we can still
measure the accuracy of the first N − k questions of any assessment of length
N , regardless of whether or not the assessment was allowed to run further for
data collection purposes. For example, suppose the stopping algorithm decides
to end an assessment after question 22, using a value of k = 2. This assessment
will provide labeled data for questions 1 to 20 that can be used to evaluate
the RNN predictions. (This is in contrast to the original approach that always
requires the label at question 29 to evaluate the predictions at any of the
previous questions.) Alternatively, if we wanted to evaluate the predictions at
questions 21 and 22 for the same assessment, we would simply have to ask two
additional questions (beyond the decision of the stopping algorithm). Thus,
this labeling strategy allows for much greater flexibility when evaluating the
performance of the RNN model.

When applying Algorithm 1 with these modified models on our validation
set, we observed that the classifiers suffer from low accuracy if the stopping
algorithm is applied too early. This isn’t all that surprising, as the classifiers
are very limited in their scope. For example, using the two-question model (i.e.,
k = 2), at question 10 in the assessment the model is only making a prediction
about the student’s placement recommendation at question 12, which may not
match the final label in many cases. Thus, to compensate for this, we activate
the stopping algorithm only for questions 17 and later (this value was tuned on
our validation set). Additionally, our experiments on the validation set showed
that, while k = 2 gave better performance in comparison to k = 1, there was
little gain from using values larger than k = 2; thus, for our evaluation on the
test data we use k = 2 for both the GRU and logistic regression models.

The results from applying this modified algorithm are shown in Figure 13.
The original GRU model, using the labels from the full-length assessments,
has the best overall performance. Looking at the average assessment length, it
is between two to three questions shorter than the modified models. Of note,
however, is that at accuracy values of 0.995 or above, the performance of the
GRU model using the n + 2 labels is not far behind the logistic regression
model using the full set of labels.

As discussed previously, in comparison to the models using the labels from
the full-length assessment, these modified models have a large disadvantage
from only knowing the information a few questions ahead. That is, during
training the models with the full-length assessment labels “know” where the
assessment ends, so to speak; this is in sharp contrast to the modified models,
which are trained to make short-term predictions. As shown in Table 4, the
average assessment lengths for labels 1 and 6 are less than 18; given that this
modified stopping rule doesn’t become active until question 17, the difference
in performance is perhaps not too surprising. Thus, when deciding on an actual
implementation of the stopping algorithm, the extra flexibility afforded by this
modified approach must be balanced against the superior performance of the
original model. We return to these issues in the discussion section.
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Fig. 13 Accuracy vs. average assessment length on held-out test data for the n+k models,
with k = 2, and the full models using all 29 questions. All models use the combined set of
features.

10 Discussion

In this work we develop and analyze a stopping algorithm for an adaptive as-
sessment. In doing so, we continue the growing trend of applying deep learning
and RNN models to educational data. However, in contrast to studies that di-
rectly compare the effectiveness of RNN models with more traditional AIED
models and techniques, we instead show that augmenting an existing model
with an RNN classifier can produce very strong results. When applied to our
test data, the RNN stopping algorithm has a substantial shortening effect on
the length of the ALEKS PPL assessment, while maintaining the high level of
accuracy that is required when offering course placement recommendations.
For example, with an accuracy of 0.995 the average number of questions on
the assessment is about 21.3, a reduction of over 26% from the full-length of
29 questions.

In addition to looking at the overall accuracy and length statistics, we ex-
tend the results from [50] with several additional analyses. For instance, we
examine the effect the stopping algorithm has on the time duration of as-
sessments, and we observe a substantial amount of time saved for the typical
student. As an example, with an accuracy of 0.995 the median time duration
decreases by over 22 minutes, going from 82.5 minutes on the full-length as-
sessments to 60.4 minutes on the shortened assessments; based on this median
time for the shortened assessments, we can infer that roughly half of the stu-
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dents would finish the assessment in about an hour or less. Additionally, the
stopping algorithm has an even larger effect on the outlier students with very
long assessment times, and a closer look at these students reveals some inter-
esting characteristics that require further study. We also evaluate the effect
on the final knowledge state returned by the assessment, as in some cases this
knowledge state is used as the starting point for a student’s remediation and
learning in the ALEKS PPL system.

Finally, motivated by the practical issues resulting from the implementa-
tion of the stopping algorithm, we introduce and evaluate an alternative model
that is trained in a different fashion. While this modified stopping algorithm
lags behind the original model in terms of performance, it still results in a
large gain over the current 29 question assessment. Furthermore, this modi-
fied version is much more flexible when it comes to evaluating its performance
and retraining future models. Thus, our current take is that both of these
models have their uses, and we imagine a scenario in which, depending on the
situation, one or the other model may be deployed. For example, given a large
institution with lots of previous ALEKS PPL assessment data, we believe that
the use of the model with labels from the full-length assessment would be pre-
ferred. In this scenario, the machine learning model can be evaluated on the
large set of historical data associated to this institution; while this may not be
as ideal as having fully labeled data from subsequent assessments, observing
consistent performance on several years of historical data would give us more
confidence in the applicability of the model to future student populations. Ad-
ditionally, a large institution would also generate more external data, such as
course grades, that can be used to continually evaluate the accuracy of the
course placement predictions.

Now, contrast this with the situation that occurs if an institution is small
and has little historical data, or has never used ALEKS PPL previously. In
these cases, the lack of existing data would make it difficult to validate the
performance of the RNN model on this new student population, as we would
not have access to enough labeled data from full-length assessments. Thus,
in such situations we would prefer to deploy the modified model with the
n + k question labels. Using this model would give us the flexibility to more
thoroughly evaluate the performance of the stopping algorithm on this new
population, and it would allow us to retrain the classifier and fine-tune it if
necessary. Eventually, once we are confident in the performance of the stopping
algorithm (say, after a year or two), it’s possible the institution could then be
moved over to the full model that is more efficient.

There are a couple of directions for further improvements to the stopping
algorithm that we are currently exploring. In regards to the aforementioned
practical issues associated with the loss of ground truth labels, a promising
approach is to use simulated data to make up the deficit. Previous works
have used simulated students to analyze the possible effects of changes to
productions systems [19,27]. In the specific case of ALEKS PPL, the detailed
approach for simulating student responses developed in [22] could be used to
generate additional training data for the RNN models.
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We are also in the process of exploring the possible benefits of using a
different architecture from the RNN models we applied. In particular, the
Transformer [75] is a newer architecture that is also designed to handle sequen-
tial data. Transformers have surpassed RNN models as the state-of-the-art in
many areas of natural language processing [7,18,47,82]. Compared to RNN
models, Transformers can be trained faster and more efficiently [75], and they
can handle longer sequences of data, with training being possible on sequences
of length greater than 12,000 [10].

While our analysis of the Transformer architecture for the current task
is very preliminary, we can say that the initial results have not yielded any
significant improvements, either in training time or predictive performance.
However, while our models and data set are relatively large for the field of
AIED, both are substantially smaller than the largest such examples that ap-
pear in the more general artificial intelligence field. For example, the largest
Transformer model to date has 175 billion parameters [7]; as the largest model
we built has roughly 41 million parameters, it is smaller by over a factor of
4000. Additionally, our sequences have length 29, which falls far short of the
longest sequences Transformers are capable of handling. If our initial results
hold and we do not see a major benefit to applying Transformer models, these
large differences in scale may be at play; that is, the major benefits of Trans-
formers may not appear at these smaller sizes.
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