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Affect dynamics, the investigation of how student affect transitions from one state to another, is a popular
area of research in adaptive learning environments. Recently, the commonly used transition metric L has
come under critical examination when applied to data that exclude self-transitions (i.e., transitions where
a student remains in the same affective state on consecutive observations); in this situation, recent work
has shown that L potentially overestimates the significance of certain transitions. In order to deal with
the unintended side effects of removing self-transitions, a solution was proposed that shifts the chance
value of L from zero to a positive value that varies based on the number of affective states in the study.
Although this treatment compensates for the aforementioned issues, it could lead to misinterpretation of
the results due to the counterintuitive nonzero chance value. Motivated by these issues, in this work we
study a modified version of the L statistic, which we refer to as L∗, with an aim to shift the chance value
back to zero when self-transitions are removed. We begin by studying the mathematical and statistical
properties of L∗, and we also compare these properties to those of the L statistic. After analyzing the
theoretical attributes of L∗, we then evaluate its performance when applied to data. In our first evaluation,
we compute L∗ values on simulated sequences of affective states, where the base rates of the states vary
from being uniform to highly non-uniform. The results provide evidence that the L∗ values at chance
are not sensitive to unequal base rates, as the computed values from our experiments are centered closely
around zero. Our second evaluation applies L∗ to actual student data generated from students working
in a digital learning environment; in this case, the use of L∗ seemingly gives a more coherent picture in
comparison to the values returned by the L statistic. Finally, along with these analyses, we also outline a
recommended procedure for applying L∗ to sequences of affective states.
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1. INTRODUCTION

Affect is an important construct in artificially intelligent educational systems, as it has been
shown to correlate closely with student learning, motivation, and engagement (Bosch and
D’Mello, 2017; Rodrigo et al., 2008). Accordingly, affect-sensitive interventions have been
designed in virtual learning environments to improve students’ learning (DeFalco et al., 2018)
and overall experience (Karumbaiah et al., 2017). One commonly used approach to collect
affect labels is through classroom field observations by certified expert coders. A frequently
used technique for these observations is the Baker Rodrigo Ocumpaugh Monitoring Protocol
(BROMP; Ocumpaugh et al. 2015), an affect coding protocol wherein students are observed by
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certified coders. These observations are made in a round-robin fashion, with each observation
lasting up to 20 seconds. The affective state labels are boredom (BOR), confusion (CON), frus-
tration (FRU), and engaged concentration (FLO). During coding, some observations are labeled
NA, corresponding to the cases where (a) the student could not be observed, (b) the affective
state was unclear to the observer, or (c) the student was in an affective state other than the states
being coded. Some research studies have also used self-reporting methods, collecting affect
data either through spontaneous in-system surveys (McQuiggan and Lester, 2009) or through
the retrospective judgments of the participants themselves (D’Mello and Graesser, 2012). In ad-
dition, several research studies in the past decade have focused on building automated detectors
of affect using physical and physiological sensors (Nye et al., 2018), as well as interaction log
data (Botelho et al., 2017).

Affect dynamics, in particular, is a field of research that focuses on how affect develops and
manifests over time (D’Mello and Graesser, 2012). Understanding affect dynamics is an impor-
tant part of developing effective affect-sensitive interventions (Kuppens, 2015). Additionally, a
large body of research has examined how students transition from one affective state to another
while engaging in learning activities (see, e.g., the review in Karumbaiah et al. 2018). A popu-
lar transition metric used in this research is the L statistic, which was originally introduced by
D’Mello et al. (2007). The L statistic calculates the relative likelihood that an affective state
(prev) will transition to a subsequent state (next), given the base rate of the subsequent state.

Definition 1 (D’Mello’s L). For affective states A and B, let Aprev represent the occurrence of
A as the previous state in a transition, and let Bnext represent the occurrence of B as the next
state in a transition. We then have

L(Aprev → Bnext) :=
P (Bnext |Aprev)− P (Bnext)

1− P (Bnext)
. (1.1)

A special case that is not fully discussed in most of the literature is that of self-transitions;
these are simply transitions where the student remains in the same affective state for more than
one step in a sequence. In many recent studies, researchers have removed self-transitions in
the data preparation stage (see the review in Karumbaiah et al. 2018). Typically, this choice
is based on the goal of the research study. If some affective states are particularly persistent
(Baker et al., 2010), including self-transitions in the analysis helps the researcher obtain a better
understanding of this behavior. However, as persistent affective states can suppress the apparent
significance of transitions between different states, excluding self-transitions could be a better
choice if the goal is to reveal a larger number of important affective patterns.

While this straightforward procedure of excluding self-transitions seems quite logical, it has
unintended consequences when applying the L statistic. Specifically, if Aprev and Bnext are
independent, then P (Bnext |Aprev) = P (Bnext), thus making the L value at chance equal to
zero. However, as observed by Karumbaiah et al. (2019), removing self-transitions violates
the assumption of independence between Bnext and Aprev, as the next state can now only take
on values other than A. Hence, when self-transitions are excluded, the at chance values of
P (Bnext |Aprev) and P (Bnext) are not necessarily equal, and we can then no longer assume that
zero represents the at chance value of L. Thus, in past studies that excluded self-transitions, the
L results are likely to have been misinterpreted. In light of these observations, Karumbaiah et al.
(2019) showed that for a state space with n affective states (n > 2), the value of L at chance is
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L(Aprev → Bnext) =

{
0, if self-transitions are included

1
(n−1)2

, if self-transitions are excluded.

This finding showed that the L statistic must be interpreted differently depending on how
many affective states are being observed. Although this solution offers a remedy for the is-
sues encountered when applying the L statistic after self-transitions are removed, it increases
the difficulty of interpreting the statistic. While running statistical tests or attempting to make
sense of the transition patterns, the users have to be cautious about choosing the correct L value
at chance; additionally, this choice also affects the interpretation of the directionality of the
transitions. Thus, there is the danger of wrongly assuming that certain positive L values are
significantly greater than the chance value, when in fact the opposite may be true. For instance,
in a study with four affective states, all L values from 0 to 0.11 are smaller than the value at
chance, which is counterintuitive and could lead to misinterpretation of the results.

Due to these issues, as an alternative to the procedure proposed in Karumbaiah et al. (2019),
in this paper we instead study a modification to the L statistic, the goal of which is to center
the chance value back at zero. We present a detailed account of the mathematical and statistical
properties of this modified statistic, which we refer to as L∗, and we compare its properties to
those of the original L statistic. After analyzing the theoretical attributes of L∗, we then evaluate
its performance empirically by applying it to data. Our first evaluation applies L∗ to simulated
sequences of affective states, where the base rates of the states vary from being uniform to
highly non-uniform. Then, our second evaluation applies L∗ to actual student data generated
from students working in a digital learning environment. Along the way, we also outline a
recommended procedure for applying L∗ to sequences of affective states.

2. MODIFYING THE L STATISTIC

In this section, we define L∗, a modified version of D’Mello’s L statistic. Assume that we
are interested in studying transitions of the form Aprev → Bnext, and that we want to ignore
transitions from A to itself. The L∗ statistic is intended to be used for this situation, and it is
designed so that the value at chance is zero.

Definition 2. Let A and B be two affective states, and let

TA = {transitions where next 6= A}. (2.1)

That is, TA consists of all transitions where the next affective state is not equal to A. We can
then define

L∗(Aprev → Bnext) :=
P (Bnext |Aprev, TA)− P (Bnext |TA)

1− P (Bnext |TA)
. (2.2)

Note that the above formula is equivalent to applying (1.1) to the transitions in TA. Alternatively,
the probabilities in (2.2) can also be computed as

P (Bnext |TA) =
P (Bnext)

1− P (Anext)
, (2.3)

and

P (Bnext |Aprev, TA) =
P (Bnext |Aprev)

1− P (Anext |Aprev)
, (2.4)
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where the values on the right-hand sides of (2.3) and (2.4) are derived from the full set of
transitions (i.e., transitions where next = A are also included).

During the preparation of this manuscript, the authors were made aware of a similar statistic,
λ, which appears in Bosch and Paquette (2020).1 Under the formulation given in Definition 2,
the base rates can be computed either individually for each sequence or averaged over a set of
sequences (where the average is taken from the individual rates computed for each sequence). If
the base rates are computed individually per sequence, L∗ is equivalent to λ; on the other hand, it
is distinct from λ if the base rates are averaged over an entire sample of sequences. Anecdotally,
we know that some researchers prefer the latter procedure of averaging over the entire sample;
however, it has also been argued that calculating the base rates individually per sequence is less
likely to return extreme values (Karumbaiah et al., 2018). We compare and contrast these two
approaches for computing the base rates in several places throughout the rest of this manuscript.

The intuition behind the definition of L∗ and, in particular, the restriction to only the tran-
sitions in TA, is the following. Suppose we have a transition that begins in affective state A,
and suppose also that, as has been done in many past studies (Bosch and D’Mello, 2013; Bosch
and D’Mello, 2017; Botelho et al., 2018; D’Mello and Graesser, 2010; D’Mello and Graesser,
2012; D’Mello et al., 2007; D’Mello et al., 2009; Karumbaiah et al., 2018), we are excluding
all self-transitions. With the L statistic, we want to evaluate P (Bnext |Aprev) to get a measure
of the association between affective states A and B; to control for the base rate of B, we do this
by comparing the value of P (Bnext |Aprev) with P (Bnext). However, when self-transitions are
excluded, A is not an option for the next affective state, which means we are not making a fair
comparison. That is, P (Bnext) is computed under the assumption that all states are possible,
while P (Bnext |Aprev) is computed with state A removed as a possible affective state to tran-
sition to; in most cases, this would serve to inflate the difference P (Bnext |Aprev) − P (Bnext).
Further complicating the issue is that, with self-transitions removed, two consecutive next states
must be different; in such a case, P (Bnext) cannot be much larger than 0.5, which could again
inflate the difference P (Bnext |Aprev)− P (Bnext).

To compensate for these issues, P (Bnext |TA) and P (Bnext |Aprev, TA) are normalized val-
ues of P (Bnext) and P (Bnext |Aprev), respectively, where the influence of the previous state A
has been removed. Thus, the goal of applying these normalizations is to remove any bias by
computing the frequency of B only in relation to the other possible next states (i.e., all the states
except for A). In order to formalize this last claim, however, we need to borrow the concept of
conditional independence.

Definition 3. Let A and B be two affective states, and let TA be defined as in (2.1). Then, we
say that the events Bnext and Aprev are conditionally independent given TA if

P (Bnext ∩ Aprev |TA) = P (Bnext |TA) · P (Aprev |TA). (2.5)

Note that the definition of conditional independence is very similar to the standard definition
of independence, with the only difference being that each probability is conditioned on TA.
Thus, if we restrict ourselves to looking only at transitions in TA, the definition of conditional
independence simplifies to the standard definition of independence, giving us a straightforward
way to check if (2.5) holds.

1While the theoretical development of L∗ happened independently of λ, we would like to note that the idea of
evaluating transition metrics with numerical simulations is entirely due to Bosch and Paquette (2020), as their work
directly inspired our simulation study evaluating the performance of L∗.
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The motivation for using conditional independence is the following. Suppose we have a
transition of the form Aprev → Bnext. As observed by Karumbaiah et al. (2019), when self-
transitions are excluded there is no longer independence between the events Aprev and Bnext, as
the next state can now only take on values other thanA; in other words, the set of possible values
for the next state is explicitly dependent on the value of the previous state. As a direct conse-
quence of this dependence between the events Aprev and Bnext, the equality of P (Bnext |Aprev)
and P (Bnext) is no longer guaranteed, and thus we cannot assume that L = 0 represents the
value at chance.

As shown in Definition 2, we have two equivalent ways in which to compute L∗ on a se-
quence of affective states. We can either modify our computations of the probabilities in (1.1),
or we can modify the sequence itself and then apply the standard formula for the L statistic.
In the latter case, removing transitions to A also has an effect on our concept of conditional
independence; as mentioned previously, once transitions to A are removed, the formula for con-
ditional independence (2.5) then simplifies to the formula for regular independence. Thus, if
regular independence holds for the modified sequence with transitions to A removed, it follows
that the L statistic (and, hence, L∗) should be equal to zero; that is, when transitions to A are
excluded, the concept of at chance is now captured by the conditional independence assumption.
Our next theorem formalizes this result.

Theorem 1. Let A and B be affective states, and suppose that the conditional independence
requirement given in (2.5) holds. Assume also that P (Bnext |TA) < 1. Then,

L∗(Aprev → Bnext) = 0.

In other words, the value of L∗ at chance is equal to zero.

Proof. By Definition 2 we have

L∗(Aprev → Bnext) =
P (Bnext |Aprev, TA)− P (Bnext |TA)

1− P (Bnext |TA)
.

Using the definition of conditional probability, we begin by expanding both sides of (2.5) to get
the equality

P (Bnext ∩ Aprev ∩ TA)

P (TA)
=
P (Bnext ∩ TA)

P (TA)
· P (Aprev ∩ TA)

P (TA)
.

Multiplying both sides of the above equation by P (TA), we then have

P (Bnext ∩ Aprev ∩ TA) =
P (Bnext ∩ TA) · P (Aprev ∩ TA)

P (TA)
. (2.6)

Applying (2.6), along with the definition of conditional probability once again, it follows that

P (Bnext |Aprev, TA) =
P (Bnext ∩ Aprev ∩ TA)

P (Aprev ∩ TA)
(definition of conditional probability)

=
P (Bnext ∩ TA) · P (Aprev ∩ TA)

P (Aprev ∩ TA) · P (TA)
(using (2.6))

=
P (Bnext ∩ TA)

P (TA)

= P (Bnext |TA).
Plugging this result into (2.2), it follows that L∗(Aprev → Bnext) = 0.
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3. EXAMPLES

Now that we have introduced L∗, we next look at specific examples to illustrate how it works. To
simplify this discussion, in each example we compute the base rates of the states from each sam-
ple individually (as opposed to computing the average base rates from a sample of sequences).

Example 1. Consider the following sequence, which was first discussed in Karumbaiah et al.
(2019).

ABBCAACCBA

In this sequence of transitions, each affective state is followed by each of the other affective
states equally (that is, A transitions once to each of B and C; B transitions once to each of A
and C; etc.). Because of this, we would expect L∗(Aprev → Bnext) to be zero. We can verify
this both directly and by applying the conditional independence condition. For the latter, we
start by looking at the transitions in TA.

AB, BB, BC, AC, CC, CB (3.1)

Since there is one transition from A to B, we have

P (Bnext ∩ Aprev |TA) =
1

6
.

As B is the next state in three of the transitions, we have

P (Bnext |TA) =
3

6
=

1

2
,

and since A is the previous state in two of the transitions

P (Aprev |TA) =
2

6
=

1

3
.

We can then verify that the conditional independence condition given in (2.5) is satisfied:

P (Bnext ∩ Aprev |TA) =
1

6

=
1

2
· 1
3

= P (Bnext |TA) · P (Aprev |TA).

Based on Theorem 1, we now know that L∗(Aprev → Bnext) = 0. To verify this result directly,
we compute L∗(Aprev → Bnext) using (2.2). Once again using the transitions listed in (3.1), we
note that there are two transitions with A as the previous state, one of which has B as the next
state; thus, we have

P (Bnext |Aprev, TA) =
1

2
.

Combining this with the previous computation for P (Bnext |TA), it follows that

L∗(Aprev → Bnext) =
1
2
− 1

2

1− 1
2

= 0.
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The previous computation demonstrates an example where L∗ returns a value of zero when
all transitions are made equally. However, as a consequence of the transitions being evenly
distributed, the affective states all appear with equal frequencies (i.e., the base rates of the states
are all equal). Our next example highlights a case when the affective states occur with different
frequencies.

Example 2. Consider the following sequence of affective states.

ABABACAD

For this sequence, we have the following base rates.

P (Anext) =
3

7

P (Bnext) =
2

7

P (Cnext) = P (Dnext) =
1

7

Furthermore, we also have the following conditional rates.

P (Bnext |Aprev) =
1

2

P (Cnext |Aprev) = P (Dnext |Aprev) =
1

4

Whether or not we condition on A being the previous state, C and D each occur as the next
state half as often as B. Put another way, the relative rates of B, C, and D are not affected
when the previous state is A. Thus, based on this argument we would expect that conditional
independence is satisfied for Bnext and Aprev.

To verify this, we begin by computing P (Bnext ∩ Aprev |TA). Note that there are four
transitions in which A is not the next state; that is, there are four transitions that are contained
in TA.

AB, AB, AC, AD (3.2)

Two of the transitions are from A to B; thus,

P (Bnext ∩ Aprev |TA) =
2

4
=

1

2
.

Since A is the previous state in all four of these transitions, we have

P (Aprev |TA) =
4

4
= 1,

and since two transitions are to B we have

P (Bnext |TA) =
2

4
=

1

2
.
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Putting this all together, we can see that the conditional independence condition given in (2.5)
is satisfied:

P (Bnext ∩ Aprev |TA) =
1

2

=
1

2
· 1

= P (Bnext |TA) · P (Aprev |TA).

So, Theorem 1 now tells us that L∗(Aprev → Bnext) is equal to zero. We next check this
directly using the transitions in (3.2). We first note that, since A is the previous state in all four
transitions, and since two of these transitions have B as the next state, we can compute

P (Bnext |Aprev, TA) =
2

4
=

1

2
.

Combining this with our previous calculation for P (Bnext |TA), we have

L∗(Aprev → Bnext) =
1
2
− 1

2

1− 1
2

= 0.

4. PROPERTIES OF L AND L∗

In Section 2 we showed that the value of L∗ is zero when the assumption of conditional inde-
pendence is satisfied; in other words, the value of L∗ at chance is zero. In this section, we look
in more detail at the properties of both L∗ and L. Throughout this discussion, we are consid-
ering transitions of the form Aprev → Bnext, and when applying L we always assume that all
self-transitions have been removed; on the other hand, when applying L∗ we always begin with
the full sequences containing all self-transitions.

4.1. MAXIMUM VALUES

We first note that the maximum value for both L and L∗ is one. This maximum value holds under
any of the possible scenarios we have considered thus far; for example, it holds if we remove all
self-transitions and then compute L using (1.1), and it also holds if we look only at transitions
in TA and apply (2.2) to compute L∗. This can be seen by observing that both statistics have a
value of one if (a) state A is always followed by state B, and (b) the base rate of B is less than
one. To see this, consider the following example sequence.

ABCAB (4.1)

Since there are no self-transitions (i.e., the sequence already has all self-transitions “removed”),
we can directly compute the following values from (4.1).

P (Bnext |Aprev) =
2

2
= 1

P (Bnext) =
2

4
=

1

2

8 Journal of Educational Data Mining, Volume 12, No 4, 2020



Plugging these into (1.1) gives

L(Aprev → Bnext) =
1− 1

2

1− 1
2

= 1.

Next, consider the transitions in TA.

AB, BC, AB

Based on these transitions, we have

P (Bnext |Aprev, TA) =
2

2
= 1

P (Bnext |TA) =
2

3
.

Applying (2.2), it follows that

L∗(Aprev → Bnext) =
1− 2

3

1− 2
3

= 1.

Note that if we had instead computed the base rate of B averaged over a set of sequences, the
results of the above computations would be unchanged as long as the base rate is less than one (if
the base rate is exactly equal to one, L∗ is undefined). Thus, as a consequence of the arguments
and example given in this section, we have the following result.

Theorem 2. Let K be a sequence of affective states, where K includes at least one transition
with prev = A. We then have

L∗(Aprev → Bnext) ≤ 1,

regardless of whether the base rates are computed individually per sequence or averaged over
all sequences. Furthermore, we also have

L(Aprev → Bnext) ≤ 1,

regardless of whether the base rates are computed individually per sequence, or averaged over
all sequences, and also irrespective of whether or not self-transitions have been removed.

4.2. MINIMUM VALUES

Now that we have established the maximum values for L and L∗, we next look at the minimum
values for the statistics. We first focus on the procedure that has historically been used when
excluding self-transitions; specifically, the case when all self-transitions are removed, and then
L is computed by applying (1.1) to the remaining transitions.

To that end, consider the following sequence.

CBACB (4.2)
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Note that the sequence does not contain any self-transitions. From this sequence, we can com-
pute the following values.

P (Bnext |Aprev) =
0

1
= 0

P (Bnext) =
2

4
=

1

2

Applying (1.1), we have

L(Aprev → Bnext) =
0− 1

2

1− 1
2

= −1.

Assuming that self-transitions are completely removed, it turns out that this is the minimum
value for L when the base rates are computed individually for each sequence.

Theorem 3. Let K be a sequence of affective states containing k ≥ 2 transitions, where K
includes at least one transition with prev = A. Assume also that K does not contain any self-
transitions and that all base rates are computed individually per sequence. We then have

L(Aprev → Bnext) ≥ −1.

Proof. The main intuition behind the proof is the observation that, as we are completely exclud-
ing self-transitions, P (Bnext) is bounded away from one (that is, with self-transitions excluded,
it’s not possible for B to be the next state in consecutive transitions). Thus, the denominator of
(1.1) is then bounded away from zero, which prevents L from being large (in absolute value)
and negative.

To begin, we note that since we are excluding self-transitions, each consecutive pair of states
in K must be different. Since K contains k total transitions, it also contains k total next states.
Thus, the maximum number of times any one affective state B can appear in K as the next state
is given by

max(B) =

{
k
2

for k even,
k+1
2

for k odd.

We first handle the case when k is odd and B appears as the next state k+1
2

times; this means
that B appears as every second state. Thus, for every transition in which prev = A, we must
also have next = B (since B appears as every second state). As we are assuming there is at
least one transition with prev = A, we must have P (Bnext |Aprev) = 1, which then implies that
L(Aprev → Bnext) = 1 > −1.

To handle the rest of the cases, we need to show that the rate of B is bounded above by 0.5.
To that end, assume once again that k is odd and suppose that B appears as the next state at most
k+1
2
− 1 times. We then have

P (Bnext) ≤
k+1
2
− 1

k
< 0.5.

Finally, when k is even, we have the inequality

P (Bnext) ≤
k
2

k
= 0.5.
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So, we have now shown that either L(Aprev → Bnext) = 1, or P (Bnext) ≤ 0.5. Next, observe
that L is strictly decreasing as a function of P (Bnext); this can be seen by noting that the deriva-
tive of L with respect to P (Bnext) is negative for any value of P (Bnext) in (0, 1). Thus, the
minimum value of L occurs when P (Bnext) = 0.5, from which it follows that

L ≥ 0− 0.5

1− 0.5
= −1.

The next result gives the lower bound for L when self-transitions are removed and the base
rates are computed by averaging over all sequences.

Theorem 4. Let K be a sequence of affective states containing k ≥ 2 transitions, where K
includes at least one transition with prev = A. Assume also that K does not contain any self-
transitions and that all base rates are computed by averaging over all sequences. We then have

L(Aprev → Bnext) ≥ −2.
Proof. As discussed in the proof of Theorem 3, for a given sequence K containing k transitions,
the maximum number of times any one affective state B can appear in K as the next state is
given by

max(B) =

{
k
2

for k even,
k+1
2

for k odd.

If k is even, then the base rate of B for any one sequence is bounded by

P (Bnext) ≤
k
2

k
=

1

2
.

Next, if k is odd, we have

P (Bnext) ≤
k+1
2

k
=

1

2
+

1

2k
.

The expression on the right side is a decreasing function of k; thus, since we are assuming that
k is odd and that k ≥ 2, the maximum value of the expression occurs at k = 3 and is given by
2
3
. Combining these results, we’ve now shown that for any individual sequence, the base rate of
B is bounded above by 2

3
. Plugging this into (1.1), and using the fact that P (Bnext |Aprev) ≥ 0,

we have
P (Bnext |Aprev)− P (Bnext)

1− P (Bnext)
≥ 0− P (Bnext)

1− P (Bnext)

=
−P (Bnext)

1− P (Bnext)
. (4.3)

Next, observe that (4.3) is strictly decreasing as a function of P (Bnext) on the interval (0, 1); this
can be seen by noting that the derivative of (4.3) is always negative on (0, 1). This means that
the minimum value of (4.3) occurs at the largest possible value of P (Bnext). Since P (Bnext) is
bounded above by 2

3
, we have

−P (Bnext)

1− P (Bnext)
≥ −2

3

1− 2
3

= −2.

11 Journal of Educational Data Mining, Volume 12, No 4, 2020



Now that we’ve given lower bounds for L, we next turn to L∗. As mentioned at the start of
the section, for our analysis of L∗ we assume that we always begin with the full sequence that
includes all self-transitions. From this full sequence, we then focus only on transitions in TA.

Theorem 5. Let K be a sequence of affective states with k ≥ 2 transitions in TA. Assume
further that at least one of these transitions has prev = A and at least one has next 6= B. Then,
if all base rates are computed individually per sequence, we have

L∗(Aprev → Bnext) ≥ −k + 1.

Proof. For any two affective states A and B, define the following variables (where |{·}| repre-
sents the cardinality, or size, of the set {·}):

mAprev
= |{transitions where next = B, prev 6= A}|

nAprev
= |{transitions where next 6= A, prev 6= A}|

mAprev = |{transitions where next = B, prev = A}|
nAprev = |{transitions where next 6= A, prev = A}|

We then have
P (Bnext |Aprev, TA) =

mAprev

nAprev

(4.4)

and
P (Bnext |TA) =

mAprev +mAprev

nAprev + nAprev

. (4.5)

Plugging (4.4) and (4.5) into (2.2) we get

L∗(Aprev → Bnext) =

mAprev

nAprev
− mAprev+mAprev

nAprev+nAprev

1− mAprev+mAprev

nAprev+nAprev

.

Finding the common denominators separately for the terms in the numerator and denominator
of the right-hand side, we have

L∗(Aprev → Bnext) =

mAprev ·(nAprev+nAprev
)−nAprev ·(mAprev+mAprev

)

nAprev ·(nAprev+nAprev
)

nAprev+nAprev
−mAprev−mAprev

nAprev+nAprev

.

After some algebraic manipulations, we can rewrite this equation as

L∗(Aprev → Bnext) =
mAprev · nAprev

−mAprev
· nAprev

nAprev · (nAprev + nAprev
−mAprev −mAprev

)
,

and if we then divide both the numerator and denominator by nAprev , we arrive at the equation

L∗(Aprev → Bnext) =

mAprev ·nAprev

nAprev
−mAprev

nAprev + nAprev
−mAprev −mAprev

.
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Next, if we assume nAprev > 0 (i.e., that there is at least one transition with prev = A), we get
the lower bound

L∗(Aprev → Bnext) =

mAprev ·nAprev

nAprev
−mAprev

nAprev + nAprev
−mAprev −mAprev

≥
−mAprev

nAprev + nAprev
−mAprev −mAprev

. (4.6)

Since we are assuming there is at least one transition of the form next 6= B, the denominator in
(4.6) must be larger than or equal to one. Furthermore, this also implies that mAprev

≤ k − 1,
as there are a total of k transitions, and in at least one of these transitions, we have next 6= B.
Combining these facts with (4.6), it follows that

L∗(Aprev → Bnext) ≥
−(k − 1)

nAprev + nAprev
−mAprev −mAprev

≥ −(k − 1)

1
= −k + 1,

as claimed.

Our next example shows that the bound given in Theorem 5 is optimal.

Example 3. Consider the following sequence of affective states, where we assume that all self-
transitions have been included.

AC B . . . B︸ ︷︷ ︸
k−1 times

This sequence contains k total transitions, all of which are in TA. We can compute the following
probabilities from the sequence.

P (Bnext |TA) =
k − 1

k

P (Bnext |Aprev, TA) =
0

1
= 0

Thus, it follows that

L∗(Aprev → Bnext) =
0− k−1

k

1− k−1
k

= −(k − 1) = −k + 1,

which is equal to the lower bound given in Theorem 5.

Next, suppose we are computing the base rate of B by averaging over all sequences. Since
we are no longer following the procedure of removing all self-transitions, P (Bnext) can, in
theory, take on any value in (0, 1), i.e., across all the sequences, we are assuming that B appears
as the next state at least once and that there is at least one other distinct affective state. More
specifically, since the base rate of B can be arbitrarily close to one, L∗(Aprev → Bnext) has no
finite lower bound.

Theorem 6. Let K be a set of transitions in TA, and assume that at least one of these transitions
has prev = A. Then, L∗(Aprev → Bnext) has no finite lower bound.
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4.3. RANGE OF VALUES FOR L (SELF-TRANSITIONS REMOVED) AND L∗ (TRANSITIONS
IN TA)

We can summarize the results from Sections 4.1 and 4.2 as follows. In the case of L∗, we assume
that k is the number of transitions in TA; that is, k is the number of transitions remaining after
removing all transitions to A.

• L with all self-transitions removed and base rates computed individually per sequence:
Range= [−1, 1]

• L with all self-transitions removed and base rates averaged over all sequences:
Range= [−2, 1]

• L∗ with transitions to A removed and base rates computed individually per sequence:
Range= [−k + 1, 1]

• L∗ with transitions to A removed and base rates averaged over all sequences:
Range= (−∞, 1]

5. PROCEDURE FOR APPLYING L∗

In this section, we outline the full procedure for applying L∗ to a data set consisting of sequences
of affect transitions. In what follows, assume that we are starting with full affect sequences that
include all self-transitions, and assume also that we are interested in computingL∗ for transitions
of the form Aprev → Bnext.

We begin by considering the case when the base rates are computed individually for each
sequence. As discussed in Section 2, L∗ can be computed by looking only at transitions where
next 6= A (and in which case the formula for L∗ reduces to the formula for L). Under this
assumption, Theorem 5 applies when a sequence has at least two transitions in TA and contains
a transition where prev = A. On the other hand, suppose we have a sequence with at most one
transition in TA. First, consider the situation when the sequence consists solely of the transition
AB. In this case, P (Bnext) = P (Bnext |Aprev) = 1, which means that L∗ is undefined. Next,
since we are assuming the sequence consists of at most one transition in TA, in any other case
either A does not occur as the previous state or B does not occur as the next state. When A does
not occur as the previous state, we follow the recommendation from Karumbaiah et al. (2018)
and consider L∗ to be undefined; then, if B does not occur as the next state (but A does appear
as the previous state at least once), (2.2) returns a value of zero for L∗. We can summarize these
examples as follows.

(1) If the affect sequence consists solely of transitions of the form AB, we have

P (Bnext |Aprev, TA) = P (Bnext |TA) = 1.

In this case, both the numerator and denominator of (2.2) are zero and, thus, L∗ is unde-
fined.
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(2) If no transitions from A occur, then we don’t know what affective state would follow A.
Thus, in this case L∗ is undefined as well.

(3) If no transitions to B occur, but at least one transition from A occurs, we have

P (Bnext |Aprev, TA) = P (Bnext |TA) = 0.

Thus, L∗ = 0.

Note that (1) – (3) cover any affect sequences with one or zero transitions in TA; additionally, a
sequence with no transitions from A is covered by (2). Thus, any sequence that is not covered
by (1) – (3) would then satisfy the conditions for Theorem 5. So, if a procedure for computing
L∗ were based on these rules, it would then follow that L∗ is either (a) undefined or (b) has a
value in [−k + 1, 1].

Next, consider the case when we compute the base rates by averaging over all of the se-
quences; that is, for each state, we compute the base rates individually for each student, and
then we take the averages of these to get the final base rate for the state. If we make the minor
assumption that each base rate is less than one, things are simplified, as (1) no longer occurs;
thus, the only situation in which L∗ is undefined is when no transitions from A occur. Algo-
rithm 1 describes a specific procedure for computing L∗ based on the arguments in this section.
In order to avoid any possible issues with undefined values or division by zero errors, the algo-
rithm is structured so that the various special cases we have discussed are explicitly handled by
the conditional statements; then, in the event that none of the conditions for these special cases
are satisfied, the value of L∗ is computed using equation (2.2).

Algorithm 1 Computing L∗

Inputs:
K, the sequence of affective states with transitions to A excluded
Transition pair of the form Aprev → Bnext

Procedure:
if base rates are computed individually andK consists only of transitions of the formAprev →
Bnext then

L∗(Aprev → Bnext) is undefined
else if transitions from A do not occur then

L∗(Aprev → Bnext) is undefined
else if transitions to B do not occur then

L∗(Aprev → Bnext) = 0
else

Compute L∗(Aprev → Bnext) using (2.2)
end if

Output:
Value of L∗(Aprev → Bnext)
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After L∗ is computed for each student using Algorithm 1, as recommended by Karumbaiah
et al. (2018), a two-tailed t-test can then be used on the entire sample of L∗ values to mea-
sure whether the average L∗ value is significantly different from zero. Additionally, if multiple
transition pairs are being studied, we also recommend using a Benjamini-Yekutieli post hoc cor-
rection procedure (Benjamini and Yekutieli, 2001), with an α value of 0.05, to control for false
positives.2

6. EVALUATING L∗ WITH SIMULATED AFFECT SEQUENCES

In this section, we report the results from a set of simulations that are designed to verify the at
chance behavior ofL∗.3 Specifically, when transitions are chosen at random, with no dependence
on the previous state, we want to check that the returned L∗ estimates are close to zero. In
all experiments, we compute the rates both individually for each student (as was done in the
examples from Section 3) and also using the population average base rates from our complete
sample. As shown in Section 4.2, computing the base rates per sequence has a restricted range
that is dependent on the length of the sequence; on the other hand, using the average base rates
gives a range of possible values from −∞ to 1. For our first set of simulations, we begin by
generating sequences of affect transitions by randomly choosing the states A, B, C, and D with
equal probability; that is, each state is chosen with probability 0.25. For each sequence, we
generate a total of 21 states, resulting in 20 total transitions, and we generate a total of 50,000
sequences; while this is an unrealistically large number, we do this to reduce as much as possible
any statistical noise in our results.

For our next set of 50,000 sequences, rather than using equal base rates for each state, we
add 0.03 to the base rate of A so that A is now chosen with probability 0.28; the other states
are then chosen equally, each with probability 0.24. We then repeat this procedure, adding 0.03
to the base rate of A, until we have 24 different sets of 50,000 sequences; over these sets of
sequences, the base rate of A ranges from 0.25 to 0.94; on the other hand, the base rates for
B, C, and D are always equal and range from 0.25 to 0.02. For each set of 50,000 sequences,
the average value of L∗(Aprev → Bnext) is calculated using both the base rate of B computed
individually from each sequence and averaged over all the sequences. Note that, as the states
are being chosen randomly, we should expect a value of zero for L∗.

The results using the procedure outlined in Section 5 are shown in Figure 1, where we can see
that the L∗ values are indeed very close to, and centered at, zero. The maximum and minimum
values are 0.002 and -0.002, respectively. Furthermore, the values from using the individual
base rates or the mean base rates are essentially identical. Thus, these results seem to indicate
that, at chance, L∗ returns a value of zero even when one base rate is disproportionately high
and dominates the other base rates.

Our next set of simulations investigates the situation when two base rates dominate. We

2Note that the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) has appeared in previous studies
of affect dynamics (Ocumpaugh et al., 2017; Karumbaiah et al., 2018). However, this procedure is only valid if
the statistical tests are independent, or if they satisfy certain dependency conditions (Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001). To the best of our knowledge, we do not know of any results that indicate
our experimental setup satisfies these conditions. Thus, we instead recommend the Benjamini-Yekutieli procedure
here, as it is more conservative and is valid under arbitrary dependence conditions between the statistical tests
(Benjamini and Yekutieli, 2001).

3See Matayoshi (2020) for a Python module for performing these simulations and computing L and L∗ values.
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Figure 1: Values of L∗(Aprev → Bnext) for the first set of simulations. In these simulations, the
base rate of A used while sampling the states varies from 0.25 to 0.94.

again start by generating sequences of affect transitions by randomly choosing the states A, B,
C, and D with equal probability, and as before, we generate a total of 50,000 sequences, each
with 21 states. After generating our first set of 50,000 sequences, we add 0.01 to the base rates
of both A and B, so that A and B are now each chosen with probability 0.26; the other states
are then chosen equally, each with probability 0.24. We then repeat this procedure, adding 0.01
to the base rates of A and B, until we have 23 different sets of 50,000 sequences; over these
sets of sequences, the base rates of A and B, which are always equal, range from 0.25 to 0.47;
conversely, the base rates for C and D are always equal and range from 0.25 to 0.03.

For each set of sequences, the value of L∗(Aprev → Bnext) is plotted in Figure 2 using the
base rate of B computed individually from each individual sequence, or averaged over all the
sequences. As before, the L∗ values are small in absolute value and centered at zero, with the
maximum and minimum values given by 0.006 and -0.004, respectively. The two methods of
computing the base rates again give essentially equivalent results.

7. AN APPLICATION OF L∗ TO STUDENT DATA

Now that we have analyzed the behavior of the L∗ statistic on simulated data, we next look in
detail at the results of applying L∗ to actual student data. The data set we consider consists of
sequences of affective states from 180 high school students, with an average of 135 states being
recorded per student (Andres et al., 2015). The recordings were made using BROMP while
the students were working in the Physics Playground learning environment (Shute and Ventura,
2013).

We begin by focusing on the analysis of this data set from Karumbaiah et al. (2018), where
all self-transitions are removed and the L statistic is applied to the remaining transitions, using
the individual base rates from each sequence. In this analysis, the main states of interest are flow
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Figure 2: Values of L∗(Aprev → Bnext) for the second set of simulations. In these simulations,
the base rates of A and B used while sampling the states are always equal and vary from 0.25 to
0.47.

(FLO), confusion (CON), frustration (FRU), and boredom (BOR); additionally, the remaining
states that are not in one of the four previous categories have all been merged into the dummy
state NA. Table 1 has the results from replicating this procedure, and for completeness we also
include the mean and standard deviation values for transitions involving NA. To adjust for the
number of statistical tests that are performed, we report in bold the transition pairs that are
statistically significant after applying a Benjamini-Yekutieli post hoc correction, with an α value
of 0.05. As shown, all transition pairs with prev=FLO have L values that are positive. However,
note that the L statistic compares the two probabilities P (Bnext) and P (Bnext |Aprev); thus, this
result implies that, for any state B, each conditional probability P (Bnext |FLOprev) is larger
than the base probability P (Bnext). In other words, these results suggest that the following
inequalities hold.

P (CONnext |FLOprev) > P (CONprev)

P (FRUnext |FLOprev) > P (FRUprev)

P (BORnext |FLOprev) > P (BORprev)

P (NAnext |FLOprev) > P (NAprev)

As we are excluding self-transitions, the four terms on the left-hand side represent all the pos-
sible transitions from FLO, and so they must sum to one. Thus, the only way in which these
(strict) inequalities can hold is if the rates on the right-hand side have a sum less than one (that
is, if both sides sum to one, it’s impossible for each term on the left-hand side to be strictly
greater than each corresponding term on the right-hand side). As has been discussed previously,
this is actually the case, as the application of L in this situation is not accounting for the fact that
self-transitions from FLO are being excluded. Thus, the base rates on the right-hand side actu-
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Table 1: Results from Karumbaiah et al. (2018) using L with all self-transitions removed. Signif-
icance tests are performed for all transition pairs not involving NA states, and L values that are
significant after applying a Benjamini-Yekutieli post hoc correction procedure, with an α value
of 0.05, are in bold.

prev next
L: Individual Base Rates

Mean SD t p-value
FLO FLO – – – –

CON 0.15 0.17 11.16 0.000
FRU 0.09 0.13 9.57 0.000
BOR 0.03 0.07 6.10 0.000
NA 0.37 0.28 – –

CON FLO 0.52 0.48 13.12 0.000
CON – – – –
FRU -0.01 0.22 -0.38 0.702
BOR -0.02 0.08 -2.77 0.006
NA -0.14 0.33 – –

FRU FLO 0.47 0.52 11.06 0.000
CON -0.07 0.16 -4.94 0.000
FRU – – – –
BOR 0.02 0.18 1.58 0.116
NA -0.12 0.34 – –

BOR FLO 0.56 0.49 9.94 0.000
CON -0.10 0.15 -5.61 0.000
FRU -0.01 0.17 -0.74 0.459
BOR – – – –
NA -0.16 0.33 – –

NA FLO 0.79 0.25 – –
CON -0.08 0.13 – –
FRU -0.08 0.16 – –
BOR -0.03 0.08 – –
NA – – – –

ally sum to 1 − P (FLOprev), thereby making it possible for each conditional rate to be strictly
greater than its corresponding base rate.

For comparison, the results from using L∗ are shown in Table 2. We can see that the number
of significant transitions is three if the base rates are computed individually per sequence, while
there are none if the average base rates are used (where in both cases we applied a Benjamini-
Yekutieli post hoc correction, with an α value of 0.05, before categorizing a result as significant).
Thus, at least for this data set, using the average base rates gives more conservative results.
Additionally, we can compare the results for transitions from FLO with the results in Table 1.
Regardless of whether we use the individual base rates or the average base rates, the results with
L∗ give a mix of values both above and below zero. While all the transitions from FLO have
L values that are positive and statistically significant, the only statistically significant L∗ value
is actually negative. Thus, this is seemingly evidence that the L statistic not only inflates the
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Table 2: Results from applying L∗ to the Physics Playground data set (Andres et al., 2015).
Significance tests are performed for all transition pairs not involving NA states, and L∗ values
that are significant after applying a Benjamini-Yekutieli post hoc correction procedure, with an
α value of 0.05, are in bold.

prev next
L∗: Individual Base Rates L∗: Average Base Rates

Mean SD t p-value Mean SD t p-value
FLO FLO – – – – – – – –

CON 0.02 0.12 2.15 0.033 0.02 0.28 0.89 0.375
FRU -0.03 0.15 -2.65 0.009 -0.01 0.22 -0.60 0.547
BOR -0.05 0.16 -4.00 0.000 -0.03 0.13 -2.58 0.011
NA 0.02 0.24 – – 0.03 0.53 – –

CON FLO -0.7 5.12 -1.67 0.098 -0.21 1.22 -2.08 0.039
CON – – – – – – – –
FRU 0.05 0.20 3.07 0.003 0.05 0.22 2.68 0.008
BOR -0.01 0.09 -1.72 0.09 -0.01 0.088 -1.40 0.164
NA 0.02 0.25 – – 0.01 0.26 – –

FRU FLO -0.32 1.64 -2.42 0.017 -0.29 1.25 -2.81 0.006
CON 0.01 0.13 1.23 0.220 0.01 0.15 0.88 0.379
FRU – – – – – – – –
BOR 0.04 0.17 2.72 0.007 0.03 0.18 2.27 0.025
NA 0.04 0.26 – – 0.03 0.27 – –

BOR FLO 0.01 1.29 0.05 0.961 -0.04 1.17 -0.29 0.769
CON -0.04 0.10 -3.23 0.002 -0.03 0.09 -3.20 0.002
FRU 0.03 0.15 1.48 0.143 0.02 0.17 1.20 0.234
BOR – – – – – – – –
NA 0.03 0.23 – – 0.02 0.25 – –

NA FLO 0.26 0.94 – – 0.24 0.97 – –
CON -0.01 0.10 – – -0.01 0.11 – –
FRU -0.02 0.11 – – -0.02 0.11 – –
BOR -0.01 0.07 – – -0.01 0.07 – –
NA – – – – – – – –

significance of these transitions, but in some of the cases it actually reverses the direction of
the sign. In turn, this could easily mislead a researcher into overestimating the importance of
starting in the state FLO.

8. DISCUSSION

As discussed by the analyses presented in Karumbaiah et al. (2018), applying the L statistic
as-is after removing all self-transitions can give misleading results. The solution proposed by
Karumbaiah et al. (2019) attends to the primary issue with the L statistic but leaves the inter-
pretation of the statistic counterintuitive in a way that could lead to inflated transition likelihood
values. Motivated by these previous works, in this manuscript, we study in detail the proper-
ties of a modification to the L statistic, where this modified statistic is intended to be applied
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specifically when self-transitions are excluded. We give a mathematical proof showing that this
statistic, which we refer to as L∗, returns a value of zero when transitions happen at chance.
We also derive maximum and minimum values for the L∗ statistic, both when the base rates are
computed individually per sequence and when they are averaged over all sequences; as a point
of comparison, similar analyses are also performed for the L statistic when all self-transitions
are removed. The results show that the minimum values differ greatly based on the statistic used
(L or L∗), as well as the procedure used to compute the base rates (per sequence or over all
sequences).

In addition to our theoretical analysis of L∗, we apply the statistic to both simulated student
data and real student data. In the former case, the simulations give empirical evidence that the
value of L∗ at chance is zero even when the base rates are highly non-uniform. In the latter case,
the results from using L∗ seemingly give a more coherent picture in comparison to the values
returned by the L statistic. For example, in one particular case an application of the L statistic
leads to the counterintuitive result that all possible transitions from a certain state have positive
values; in other words, without using the adjustment proposed in Karumbaiah et al. (2019), the
resulting values seem to indicate that all the possible transitions are more likely than chance. On
the other hand, applyingL∗ gives a mix of positive and negative values, with the only statistically
significant result actually being in the negative direction. Finally, we also outline a step-by-step
procedure for applying the L∗ statistic, which we hope will be useful to other researchers.

While this work focuses on the removal of self-transitions from affect dynamics data, differ-
ent scenarios may occur when dealing with other types of sequential data. That is, rather than
considering only self-transition pairs for removal, it may be necessary to remove any particular
type of transition pair, self-transition or not, from the analysis; this could be due to the goals
of the study, the preferences of the researcher, or the simple fact that it’s impossible for certain
transitions to occur. As an illustration of this, some previous studies have analyzed sequences of
student actions within digital learning systems (Biswas et al., 2010; Bosch and D’Mello, 2017).
Depending on the design of the system, direct transitions may not exist for all of the possible
pairs of action. For example, suppose the system requires the student to submit a correct answer
before moving on to a new problem; in such a case, a direct transition from an incorrect answer
to a new problem is not allowed, and this must be taken into account when analyzing the differ-
ent transition pairs. As our current work does not apply in such situations, further research is
needed to design and evaluate an alternative procedure that can be used for these more general
scenarios.
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