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Various areas of educational research are interested in the transitions between different states—or events—
in sequential data, with the goal of understanding the significance of these transitions; one notable ex-
ample is affect dynamics, which aims to identify important transitions between affective states. Unfortu-
nately, several works have uncovered issues with the metrics and procedures commonly used to analyze
these transitions. As such, our goal in this work is to address these issues by outlining an alternative
procedure that is based on the use of marginal models. We begin by looking at the specific mechanisms
responsible for a recently discovered statistical bias with several metrics used in sequential data analysis.
After giving a theoretical explanation for the issue, we show that the marginal model procedure appears
to adjust for this bias. Next, a related problem is that the common practice of removing transitions to
repeated states has been shown to have unintended side-effects—to account for this issue, we develop
a method for extending the marginal model procedure to this specific type of analysis. Finally, in a
recent study evaluating the problem of multiple comparisons and sequential data analysis, the Benjamini-
Hochberg (BH) procedure, a commonly used approach to control for false discoveries, did not perform
as expected. By applying a technique from the biostatistics and epidemiology literature, we show that the
performance of the BH procedure, when used with the marginal model method, can be brought back to its
expected level. In all of our analyses, we evaluate the proposed method by both running simulations and
using actual student data. The results indicate that the marginal model procedure seemingly compensates
for the problems observed with other transition metrics, thus resulting in more accurate estimates of the
importance of transitions between states.
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1. INTRODUCTION

As learning is a process that occurs over time, many areas of education and learning analytics
research require the analysis of data that have a sequential or temporal ordering. Such analyses
are important, as our understanding of the learning process can be greatly improved by leverag-
ing the temporal features of these data (Knight et al., 2017). Additionally, properly analyzing
the sequential properties of educational data has been shown to help improve the performance
and accuracy of student models (Andrade et al., 2017; Mahzoon et al., 2018). When dealing
with sequential data, researchers are often interested in the transitions that occur between dif-
ferent states—or events—in these sequences. One prominent example is in the area of affect
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dynamics, with the goal being to identify transitions between affective states that are highly
significant (D’Mello and Graesser, 2012; Karumbaiah et al., 2018). Other works have applied
similar analyses to logs of student actions in learning systems, in an attempt to understand how
students transition between different activities within these systems (Biswas et al., 2010; Bosch
and D’Mello, 2017).

Unfortunately, multiple issues have recently been uncovered with the analysis and interpreta-
tion of transitions in sequential data. To start, the work by Bosch and Paquette (2021) evaluated
several metrics commonly used to analyze transitions within sequential data. In addition to look-
ing at the probability estimates of different transitions, the study also evaluated techniques and
transition metrics such as lag sequential analysis (Sackett, 1979) and the L statistic (D’Mello
et al., 2007). Using numerical simulations, the analysis revealed a subtle statistical bias that
occurs with these transition metrics, causing them to return unexpected and inflated values. This
bias then creates extra difficulties when interpreting the values of the transition metrics, thus
making it harder to measure the significance of transitions—in particular, the significance of a
transition from a state to itself is likely to be underestimated, while the opposite effect occurs for
transitions between different states. Additionally, the experiments in Bosch and Paquette (2021)
showed that this issue is especially pronounced in short sequences of transitions.

A special case that has also turned out to be problematic is the handling of self-transitions
in sequential data; these are simply transitions where the student remains in the same state
for more than one step in a sequence. In many recent studies, researchers have removed self-
transitions before analyzing the data with the L statistic (see the review in Karumbaiah et al.
2018 for further information). However, Karumbaiah et al. (2019) showed that excluding self-
transitions has unintended consequences when used in combination with the L statistic, most
likely giving misleading results. Thus, recent work in this area has focused on addressing this
issue by either suggesting a modified interpretation of the L statistic values (Karumbaiah et al.,
2019; Karumbaiah et al., 2021), or by using an altered version of the L statistic (Bosch and
Paquette, 2021; Matayoshi and Karumbaiah, 2020).

One final issue is related to the common procedure of testing several different null hypothe-
ses simultaneously—this is known in the statistics literature as the multiple comparisons or
multiple testing problem (James et al., 2021; McDonald, 2014). Specifically, when evaluating
transitions in sequential data, many pairs of transitions are typically analyzed with statistical
tests and, as such, the probability of making a discovery—i.e., rejecting a null hypothesis—is
higher than in an analysis involving a single statistical test. Thus, it follows that the probabil-
ity of rejecting a true null hypothesis increases as well; such errors are variously called false
positives, false discoveries, or type I errors. When analyzing sequential data, it is common to
apply the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995) to control the
false discovery rate (FDR). One complication with using the BH procedure is that, in order for
the theoretical guarantees on its performance to hold, the statistical tests must either be inde-
pendent or satisfy certain dependency conditions (Benjamini and Hochberg, 1995; Benjamini
and Yekutieli, 2001). However, the difficulty is that it is not always straightforward to verify
the conditions for applying the BH procedure; while some scenarios have been mathematically
proven to satisfy these conditions, many common examples have not been. Thus, Matayoshi and
Karumbaiah (2021a) ran numerical experiments evaluating the performance of the BH proce-
dure when applied to the analysis of sequential data, and their results indicated the BH procedure
does not always perform as expected in such situations, leading to a higher-than-expected FDR.

Motivated by all of the aforementioned issues, in this work we outline and evaluate a com-
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plete procedure for analyzing transitions in sequential data. Our first analysis, which appears
in Section 2, was originally presented in Matayoshi and Karumbaiah (2021b), and it addresses
the bias with transition metrics discovered by Bosch and Paquette (2021). After replicating the
Bosch and Paquette (2021) numerical experiments, we give a theoretical analysis that attempts
to explain the underlying mechanisms causing the observed statistical bias. Based on this ex-
planation, we then outline a regression procedure that measures the significance of transitions
using a marginal model approach. To evaluate the effectiveness of this procedure, we apply it to
the simulated data generated in our numerical experiments.

Next, the analysis in Section 3, which is new and has not appeared in the literature pre-
viously, extends the marginal model procedure to the case when the researcher would like to
remove the influence of self-transitions—by extending the model in this way, our objective is
to have a flexible procedure that can be used interchangeably, whether or not the researcher
wants to remove the influence of self-transitions. We present a series of theoretical results that
outline the proposed model and show that the “at-chance” values—that is, the values under the
assumption of complete independence—returned by the model are unbiased. We then evaluate
the performance of the model in numerical experiments on simulated data.

In Section 4 we present another original analysis, where we continue the work on multiple
comparisons from Matayoshi and Karumbaiah (2021a). In particular, we describe and evaluate
adjustments to the marginal model approach that are taken from the biostatistics and epidemi-
ology literature, and we show that using these changes leads to better control of the FDR with
the BH procedure, addressing an issue found in Matayoshi and Karumbaiah (2021a). Along
with observing the improved performance of the BH procedure, we also find that, when self-
transitions are excluded, the marginal model gives improved performance in comparison to L∗,
a version of the L statistic specifically modified for the case when self-transitions are removed
(Matayoshi and Karumbaiah, 2020). Finally, we consolidate all of these ideas in Section 5 and
evaluate the complete procedure on real student data. In summary, we investigate the following
issues related to the analysis of transitions in sequential data.

• To adjust for a statistical bias that occurs with existing transition metrics, we outline and
evaluate a new procedure using marginal models.

• We next modify, and then evaluate, the marginal model procedure for the specific case
when the researcher would like to remove the influence of self-transitions.

• Lastly, we show that by applying a technique from the biostatistics and epidemiology
literature, the marginal model approach, when used in combination with the Benjamini-
Hochberg procedure, appropriately controls for false discoveries.

2. TRANSITION METRICS AND STATISTICAL BIAS

In this section, we investigate a statistical bias with the analysis of state transitions that was
first uncovered by Bosch and Paquette (2021). The work in this section originally appeared in
Matayoshi and Karumbaiah (2021b).

2.1. TRANSITION METRIC SIMULATIONS

Consider the case when transitions between states happen purely at random; that is, at all times
in a sequence of states, the next state is sampled uniformly at random from all possible states. In
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Figure 1: Plot of L values and conditional probabilities from our replication of the simulations
in Bosch and Paquette (2021). The sequences are generated by choosing states A and B equally
at random.

such a case, we want our transition metric to return a baseline value that indicates the transitions
are happening randomly and are not influenced by the starting state. This is the setting for the
numerical experiments in Bosch and Paquette (2021), and we begin our current analysis with a
replication of their work. To that end, consider two possible states, A and B. For each sequence
length from 3 to 150, we generate 10,000 sequences of the given length by choosing between A
and B at random; that is, we randomly choose between A and B with an equal probability of
0.5. For each of these sequences, we compute the values of P (B |A) and P (A |A); the former
is the probability of transitioning to B, given that the starting state is A, while the latter is the
probability of transitioning to A, given that the starting state is also A. Once we have computed
these values for each sequence, we then compute the average for each conditional probability
over the entire group of 10,000 sequences. Additionally, as another point of comparison, as done
in Bosch and Paquette (2021) we also include the values from the L statistic, a popular transition
metric used in the field of affective dynamics. The L statistic, which was originally introduced
in D’Mello et al. (2007), is defined as follows.

Definition 1 (L statistic). For states A and B, let A → B represent transitions that start in state
A and end in state B. We then have

L(A → B) :=
P (B |A)− P (B)

1− P (B)
, (2.1)

where P (B) is the overall probability of B occurring as the next state and P (B |A) is the
conditional probability of transitioning to B, given that the starting state is A.

A positive value for the L statistic indicates that transitions to B are more likely when start-
ing in A, compared to the overall rate of transitions to B, while a negative value indicates that
transitions to B are less likely when starting in A, again in comparison to the overall rate of tran-
sitions to B. As with the conditional probabilities, we first compute the L values individually for
each sequence, and we then find the averages of these values from the entire group of sequences.
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Table 1: Computed weighted conditional probabilities.

AAA AAB ABA ABB BAA BAB BBA BBB
Mean

Unweighted Weighted
P (A |A) 1 0.5 0 0 1 0 – – 0.42 0.5

P (B |A) 0 0.5 1 1 0 1 – – 0.58 0.5

Weight 2 2 1 1 1 1 0 0

The values for both the conditional probabilities and the L statistic are shown in Figure 1, and
it is worth noting that the results are consistent with those from Bosch and Paquette (2021). Re-
garding the conditional probabilities, while we expect these to be close to 0.5, as we are choosing
between A and B equally at random, we can see that the computed values are heavily biased for
the shortest sequences, with the bias then decreasing—but not completely disappearing—as the
sequence length grows. In particular, the conditional probability values measuring transitions
from A → A are biased in the negative direction, while the values for transitions of the form
A → B show a bias in the positive direction. Turning next to the L statistic, we expect the
values to be close to zero as, again, the states are being chosen uniformly at random. However,
as with the conditional probabilities, we can see that there is a bias that is especially pronounced
for the shortest sequences. For example, the maximum value of L(A → B) is just over 0.4
and the minimum value of L(A → A) is just under −0.5, and both of these values occur with
the sequences of length 3. Note that, while the bias is fairly minimal once we reach sequence
lengths of 40 or 50, obtaining this amount of data in a physical classroom can be challenging
and impractical.1

2.2. BIAS WITH TRANSITION METRICS—THEORETICAL ANALYSIS

Now that we have replicated the experiments from Bosch and Paquette (2021), we next offer
a theoretical explanation for the biased values observed in these experiments.2 The core of the
issue can be traced to the conditional probability estimates of P (B |A) and P (A |A). Our claim
is that the bias is an artifact of the averaging procedure used to estimate these values across the
different sequences, and that this bias is then carried through to various transition metrics, such
as L, that rely on these estimates. We illustrate the issue using a simple example. Consider the
eight distinct sequences of length three consisting only of the states A or B, or both.

AAA AAB ABA ABB BAA BAB BBA BBB

1As a simple example, consider a relatively small classroom containing 10 students. If we assume that the
observation window is 20 seconds—which is fairly standard in affect dynamics research—it would take a single
observer more than 2 hours to obtain 40 observations for each student, something that is not possible when a class
period is under an hour, as many are.

2After the work in Matayoshi and Karumbaiah (2021b) was completed, we became aware of research from
Miller and Sanjurjo (2018) showing that a similar bias occurs when studying the “hot hand fallacy” of Gilovich
et al. (1985)—that is, the question of whether or not a successful outcome makes it more likely for subsequent
outcomes to be successful. While the original study did not find evidence for such a relationship (Gilovich et al.,
1985), the work by Miller and Sanjurjo (2018) suggested that, after correcting for the statistical bias, there is
evidence for the “hot hand” after all.
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Now, as all transitions are equally likely in this set of sequences—i.e., all transitions occur
with the same frequency—we would expect the computed estimates of P (B |A) and P (A |A)
to each be 0.5. However, as shown by the values in the Unweighted column of Table 1 this is not
the case. If we compute the probabilities individually for each sequence, and we then compute
the averages over all the sequences, we obtain a value of 0.42 for P (A |A) and a value of 0.58
for P (B |A). In this example, the averaging procedure ignores the number of transitions that
occur within each sequence, which then distorts the estimates. For example, the sequence AAA
contains two transitions that start in A, while the sequence BAB contains only one; however,
this discrepancy is ignored when computing the values in the Unweighted column of Table 1.
Based on these results, this effect can be summarized, in some sense, by saying that high values
of P (B |A) occur more frequently than high values of P (A |A) when the number of transitions
within the sequences are ignored.

Next, consider what happens if, instead of averaging the conditional probabilities over the se-
quences, we compute the conditional probabilities by combining—or pooling—all of the data.
That is, rather than grouping the transitions by sequence, we simply compute the rates of the
transitions over the entire data set. Equivalently, we can also think of this as computing a
weighted average of the conditional probabilities per sequence, where the weight is determined
by the number of relevant transitions. For example, since sequences such as AAA and AAB
contain two transitions that start in A, we assign these a weight of 2; on the other hand, se-
quences such as ABB and BAB only contain one transition from A, so these sequences are
assigned a weight of 1. The results are shown in the Weighted column of Table 1, where we can
see that the weighted conditional probabilities are both equal to 0.5, as desired.

While the above procedure successfully computes the conditional probabilities, unfortu-
nately, it introduces additional complexity for performing statistical inference. In particular,
by pooling all of the data into one group, we have added some dependence between our data
points, as many transitions can come from the same sequence (i.e., the same student). In such a
case, common procedures like a standard t-test are no longer valid. Additionally, a similar issue
also occurs if we were to apply the L statistic to the pooled data; while pooling the data before
computing the L statistic would, presumably, help with the statistical bias, it would again add
some dependence between our data points. Thus, in the next section we outline a new procedure,
one that attempts to retain the information that is lost by averaging over the sequences, while
also appropriately handling the resulting dependence in the data.

2.3. REGRESSION PROCEDURE USING MARGINAL MODELS

Motivated by the discussion in the previous section, in what follows we describe a procedure that
attempts to retain the detailed transition information with the use of a logistic regression model.
To begin, suppose we are interested in studying transitions of the form A → B. Furthermore,
assume that there are no restrictions on transitions between states.3 To estimate the effect that
starting in A has on transitions to B, we build a regression model in which the response variable
is binary, with a value of one if the next state is equal to B, and a value of zero otherwise.
Due to the binary form of the response variable, we use the logit as our link function. The sole
predictor variable is another binary variable that is one if the previous state is equal to A, and

3In comparison, some studies specifically ignore self-transitions—i.e., data points in which the same state ap-
pears consecutively—while in other situations certain transitions may be impossible. We return to this topic in
Section 3.
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zero otherwise. Under this formulation, a sequence of length n generates n− 1 data points. The
variables of the model are summarized as follows.

• y = yit: one if B is the next state for student i at time t; zero otherwise

• x = xit: one if A is the previous state for student i at time t; zero otherwise

Letting σ represent the standard logistic function, the regression equation then has the form

P (yit = 1 |xit) = σ(β0 + β1xit) =
1

1 + e−(β0+β1xit)
. (2.2)

In our analysis, we are interested in the coefficient β1 from (2.2). The value of β1 gives an
indication of how much starting in state A—in comparison to not starting in state A—influences
the likelihood of transitioning to state B. A large positive value for this coefficient would suggest
that starting in A increases the likelihood of transitioning to B, in comparison to starting in a
state that is not A. Analogously, a negative value for the coefficient might suggest that starting in
A decreases the likelihood of transitioning to B, in comparison to not starting in A. Additionally,
a benefit of this approach is that we can compare the probability estimates from the regression
for the two different values of the predictor variable—zero or one—to get an additional measure
of how large of an effect the predictor variable has.

One complication with the above procedure is that we have to deal with dependent—or
correlated—data, as each sequence of transitions contains multiple measurements from the same
student. Thus, when fitting the parameters for the logistic regression, we need to properly ac-
count for the dependence between these repeated measurements. We can accomplish this by
using a multilevel model, where each individual student is considered a “group” or “cluster.”
Specifically, we use a marginal—or population averaged—model based on generalized estimat-
ing equations (GEE) (Heagerty and Zeger, 2000; Liang and Zeger, 1986). Marginal models are
able to handle correlated data, and as such they are commonly used on data containing repeated
measurements. We choose a marginal model because of our focus on estimating the average
response over the entire population, rather than estimating the effects on the individuals.4 In
order to account for the correlated data, we must specify the type of correlation structure for the
data within each group. In our situation with repeated measurements, two common choices for
the structure are an exchangeable correlation and a first-order autoregressive correlation. The
exchangeable structure assumes that there is some common dependence between all the data
in a group, while the autoregressive structure assumes that the dependence between the data
in a group varies with time (Hardin and Hilbe, 2012; Heagerty and Zeger, 2000; Szmaragd
et al., 2013). While it may occasionally be difficult to precisely determine the correct choice of
correlation structure, it is worth noting that the parameter estimates are statistically consistent
even if this structure is misspecified; in such a case, only the efficiency of these estimates is
compromised (Hardin and Hilbe, 2012; Liang and Zeger, 1986).

Since the estimating equations used in GEE models are not necessarily likelihood based, we
are unable to use the standard Akaike Information Criterion (AIC) (Akaike, 1974) to compare
different models. Instead, we can compare the fits of different models using the Quasi-AIC
(QIC) score (Pan, 2001); among other things, using the QIC score can help us determine the
best choice of correlation structure (Hardin and Hilbe, 2012; Pan, 2001). Then, to analyze the

4If the focus is on the individuals, one possible approach is to estimate the subject-specific parameters by using
a mixed-effects model with a random intercept for each student.
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Figure 2: Plots comparing (a) the unweighted conditional probability values and estimates from
the marginal models, and (b) the L values and β1 coefficients from the marginal models. The
sequences are generated by choosing states A and B equally at random.

effect of our predictor variable, we can evaluate β1 using standard techniques such as the Wald
test for statistical significance (Hardin and Hilbe, 2012). Another advantage of this approach is
that it directly compares the cases when (a) the starting state is A and (b) the starting state is not
A. In comparison, the L statistic compares the cases when the starting state is A to the overall
behavior, regardless of the starting state. The drawback to the latter approach is that if A is very
common and its occurrence dominates the sequence of states, it is possible that the values of
P (B) and P (B |A) will be very close simply because A is almost always the starting state.

2.4. EXPERIMENTS ON SIMULATED DATA

In this section, we apply the marginal model approach to simulated data using the statsmodels
(Seabold and Perktold, 2010) Python library.5 We begin by applying the model to the data from
our replication of the work in Bosch and Paquette (2021); recall that, for n = 3, 4, . . . , 150,
we generate 10,000 different sequences, each of length n, where each state in each sequence is
chosen uniformly at random from A or B. The first set of results for the transitions A → A and
A → B are shown in Figure 2a. There, we plot the unweighted conditional probability values,
computed directly from the raw data and averaged over each set of 10,000 trials, along with the
estimated probabilities from the marginal models; in the latter case—i.e., the dashed green line
and solid red line—these estimates correspond to the model predictions when x = 1. We can see
that, for both transition pairs A → A and A → B, the estimates from the marginal models are
all closely centered around 0.5; this is in sharp contrast to the computed conditional probability
values, which exhibit the previously discussed bias.

Next, in Figure 2b we compare the L values with the values of β1, the coefficient of our
single predictor variable. We have included both sets of values in the same plot to emphasize the
differences in their behavior, as well as to facilitate comparisons with the corresponding lines in

5A Python module containing code for running all of our numerical experiments is available at https://
doi.org/10.5281/zenodo.12049382 (Matayoshi, 2024).
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Figure 3: Plot of unweighted conditional probability values and the corresponding estimates from
the marginal models. The sequences are generated by choosing A with probability 0.6, B with
probability 0.2, and C and D each with probability 0.1.

Figure 2a. As shown previously, the L values for A → B have a positive bias, with a maximum
value of just over 0.4, while the L values for A → A have a negative bias, with a minimum value
of just below −0.5. However, in all cases the β1 values are closely centered around zero, as is
preferred. We should also mention that, for this analysis, we use the exchangeable correlation
structure for the marginal models. As the states are chosen with equal probability from either
A or B, there is actually no underlying dependence in the data; thus, it is instructive that, even
with the incorrect correlation structure, the resulting parameter estimates are accurate.

To investigate the situation when the transition states occur with different frequencies—or
base rates—we run one additional set of simulations. For these simulations, we assume there are
four possible states: A, B, C, and D. To generate our sequences, we sample randomly according
to the following distribution: A is chosen with probability 0.6, B is chosen with probability 0.2,
and C and D are each chosen with probability 0.1. Then, for n = 3, 4, . . . , 150, we generate
10,000 different sequences, each of length n, according to this probability distribution on the
states. The results are shown in Figure 3, where we plot the computed conditional probabilities,
along with the estimated probabilities from the marginal models. As before, we can see that the
raw conditional probabilities are biased for the shorter sequences. In comparison, the estimates
from the marginal models are centered closely around the true values.

3. REMOVING SELF-TRANSITIONS

3.1. MODIFYING THE MARGINAL MODEL PROCEDURE

In this next section, we extend the marginal model procedure to a particular situation that occurs
in sequential data analysis. Specifically, we focus on the case when researchers want to remove
the influence of repeated states. To do this, many researchers in the affect dynamics commu-
nity remove self-transitions—i.e., transitions where the same state is repeated for more than one
step—before analyzing the data (see Karumbaiah et al. 2018 for a review of recent works em-
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ploying this technique). Choosing whether or not to remove self-transitions is typically based
on the goals of the study. For example, if the aim of the study is to identify persistent affective
states—i.e., states that tend to occur multiple times in a row (Baker et al., 2010)—self-transitions
would need to be included. However, if the researcher is more concerned with understanding
transitions between states, removing self-transitions could make it easier to identify and measure
the transitions from different states. While this procedure appears logical at first glance, it has
unintended consequences when analyzing the resulting sequences. To start, note that if states
A and B appear independently of each other, then P (B |A) = P (B); applying a measure such
as the L statistic should then result in a value of zero, at least in theory (in practice, the statis-
tical bias uncovered by Bosch and Paquette 2021 demonstrates this is not necessarily the case).
However, as shown by Karumbaiah et al. (2019), removing self-transitions violates the assump-
tion of independence between the appearances of A and B, as the next state can now only take
on values other than A. As such, when self-transitions are excluded, under the assumption of
independence the values of P (B |A) and P (B) are not necessarily equal, and we can no longer
assume that zero represents the value of the L statistic in the independent case. To compensate
for these issues, a modified version of the L statistic, named L∗, was introduced in Matayoshi
and Karumbaiah (2020).

Definition 2. Let A and B be two states, and let

T·,A = {transitions where the next state is not A}. (3.1)

Then, we define

L∗(A → B) :=
P
(
B
∣∣A, T·,A

)
− P

(
B
∣∣T·,A

)

1− P
(
B
∣∣A, T·,A

) , (3.2)

where P (B |A, T·,A) is the probability of a transition to B in T·,A, given that the starting state is
A, while P

(
B
∣∣T·,A

)
is the overall probability of a transition to B in T·,A. The base rate of the

state B, given by P
(
B
∣∣T·,A

)
in (3.2), can be computed either individually for each sequence,

or averaged over the entire set of sequences.

As discussed in Matayoshi and Karumbaiah (2020), the intuition behind the use of the set
T·,A can be described as follows. Assume we have a transition that begins in affective state
A. In order to reduce the influence of repeated transitions, suppose a researcher decides to
exclude all self-transitions. Now, consider the comparison of the probabilities P (B |A) and
P (B). When self-transitions are excluded, P (B |A) is computed with state A removed as a
possible affective state to transition to—in contrast, P (B) is computed under the scenario that
all states are possible. The result is that, in most cases, this would serve to inflate the difference
P (B |A) − P (B) as, all else equal, the probability of a transition to B is higher when there
are fewer possible states. Another important observation is that, with self-transitions removed,
any consecutive states must be different, which means P (B) cannot be much larger than 0.5; as
before, this could again inflate the difference P (B |A)− P (B).

While Matayoshi and Karumbaiah (2020) provided both theoretical and empirical evidence
validating the use of L∗—with the empirical evidence being based on both simulated and real
data—there is as yet no modification to the L statistic that satisfactorily adjusts for the statistical
bias discussed in the previous section. Thus, in the interest of having a uniform procedure that
is applicable regardless of whether or not self-transitions are removed, we next outline how the
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above discussion for L∗ can be used to extend the marginal model procedure to the case when
self-transitions are removed.

To begin, observe that the formula for L∗ (3.2) is equivalent to applying the formula for
the L statistic (2.1) to the transitions in T·,A. Thus, based on this intuition, the marginal model
procedure can also be extended to remove the influence of self-transitions by applying it to only
the transitions in T·,A. In this case, from (2.2) we then have

P (yit = 1 |xit = 1) = P (B |A, T·,A). (3.3)

That is, P (yit = 1 |xit = 1) is the estimated probability of a transition to B in T·,A, given that
the starting state is A. Similarly, we have

P (yit = 1 |xit = 0) = P (B |A, T·,A). (3.4)

That is, P (yit = 1 |xit = 0) is the estimated probability of a transition to B in T·,A, given that
the starting state is not A. Note that these are normalized values of P (B |A) and P (B |A), in
the sense that the influence of A (possibly) being the next state is removed. By doing this, our
goal is to have the at-chance value be centered at zero. To make this rigorous, we need to borrow
the concept of conditional independence.

Definition 3. Let A and B be two affective states, and let T·,A be defined as in (3.1); that is,
let T·,A be the set of transitions where the next state is not A. Suppose that Bnext represents the
occurrence of a transition that ends in B, while Aprev represents the occurrence of a transition
that starts in A. Then, we say that the events Bnext and Aprev are conditionally independent
given T·,A if

P (Bnext ∩ Aprev |T·,A) = P (Bnext |T·,A) · P (Aprev |T·,A). (3.5)

Note that the above definition of conditional independence is very similar to the standard defini-
tion of independence, with the only difference being that each probability is conditioned on T·,A.
Thus, if we restrict ourselves to looking only at transitions in T·,A, the definition of conditional
independence simplifies to the standard definition of independence, giving us a straightforward
way to check if (3.5) holds.

The motivation for using conditional independence is the following. Suppose we have a
transition of the form A → B. As observed by Karumbaiah et al. (2019), when self-transitions
are excluded there is no longer independence between the events Aprev and Bnext, as the next
state can now only take on values other than A; in other words, the set of possible values for
the next state is explicitly dependent on the value of the previous state. As a direct consequence
of this dependence between the events Aprev and Bnext, the equality of P (B |A), P (B |A), and
P (B) is no longer guaranteed, and thus we cannot assume that L = 0 or β1 = 0 represent the
values at-chance.

Note that removing transitions to A has an effect on our concept of conditional independence—
once transitions to A are removed, the formula for conditional independence (3.5) then simplifies
to the formula for regular independence. Thus, if regular independence holds for the modified
sequence with transitions to A removed, it follows that the probabilities P (B |A), P (B |A), and
P (B) should all be equal; that is, when transitions to A are excluded the concept of at-chance is
now captured by the conditional independence assumption. In order to formalize this result, we
need the following lemma.
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Lemma 1. Let A and B be two affective states, and let T·,A be defined as in (3.1). Assume that
the events Bnext and Aprev are conditionally independent given T·,A. We then have

P (Bnext ∩ Aprev |T·,A) = P (Bnext |T·,A) · P (Aprev |T·,A). (3.6)

That is, Bnext and Aprev are also conditionally independent given T·,A.

Proof. We start by observing that

Bnext ∩ T·,A =
(
Bnext ∩ Aprev ∩ T·,A

)
∪
(
Bnext ∩ Aprev ∩ T·,A

)
,

and (
Bnext ∩ Aprev ∩ T·,A

)
∩
(
Bnext ∩ Aprev ∩ T·,A

)
= ∅.

Thus, it follows that

P
(
Bnext ∩ T·,A

)
= P

(
Bnext ∩ Aprev ∩ T·,A

)
+ P

(
Bnext ∩ Aprev ∩ T·,A

)
. (3.7)

Next, rearranging the terms in (3.7) and applying the definition of conditional probability, we
have

P
(
Bnext ∩ Aprev

∣∣T·,A
)
=

P
(
Bnext ∩ Aprev ∩ T·,A

)

P (T·,A)

=
P
(
Bnext ∩ T·,A

)
− P

(
Bnext ∩ Aprev ∩ T·,A

)

P (T·,A)
(using (3.7))

=
P
(
Bnext ∩ T·,A

)

P (T·,A)
−

P
(
Bnext ∩ Aprev ∩ T·,A

)

P (T·,A)

= P
(
Bnext

∣∣T·,A
)
− P

(
Bnext ∩ Aprev

∣∣T·,A
)
.

Applying (3.5), it follows that

= P
(
Bnext

∣∣T·,A
)
− P

(
Bnext

∣∣T·,A
)
· P

(
Aprev

∣∣T·,A
)

(using (3.5))

= P
(
Bnext

∣∣T·,A
)
·
(
1− P

(
Aprev

∣∣T·,A
))

= P
(
Bnext

∣∣T·,A
)
· P

(
Aprev

∣∣T·,A
)
,

as claimed.

We can now prove our main result.

Theorem 1. Let A and B be affective states, and suppose that the conditional independence
requirement given in (3.5) holds. Assume also that P

(
Aprev ∩ T·,A

)
> 0. Then,

P
(
Bnext

∣∣Aprev, T·,A
)
= P

(
Bnext

∣∣Aprev, T·,A
)
.
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Proof. Starting with an application of the definition of conditional probability, we have

P
(
Bnext

∣∣Aprev, T·,A
)
=

P
(
Bnext ∩ Aprev ∩ T·,A

)

P
(
Aprev ∩ T·,A

)

=
P
(
Bnext ∩ Aprev ∩ T·,A

)

P
(
Aprev ∩ T·,A

) ·
P
(
T·,A

)

P
(
T·,A

)

=
P
(
Bnext ∩ Aprev

∣∣T·,A
)

P
(
Aprev

∣∣T·,A
)

(using the definition of conditional probability)

=
P
(
Bnext

∣∣T·,A
)
· P

(
Aprev

∣∣T·,A
)

P
(
Aprev

∣∣T·,A
) (using (3.5))

= P
(
Bnext |T·,A

)
.

Next, solving (3.6) for P
(
Bnext |T·,A

)
, it follows that

=
P
(
Bnext ∩ Aprev

∣∣T·,A
)

P
(
Aprev

∣∣T·,A
)

=
P
(
Bnext ∩ Aprev ∩ T·,A

)

P
(
T·,A

) ·
P
(
T·,A

)

P
(
Aprev ∩ T·,A

)

(using the definition of conditional probability)

=
P
(
Bnext ∩ Aprev ∩ T·,A

)

P
(
Aprev ∩ T·,A

)

= P
(
Bnext

∣∣Aprev, T·,A
)
,

as claimed.

3.2. NUMERICAL EXPERIMENTS

In this section, we evaluate the marginal model procedure, adapted to remove the influence of
self-transitions, on simulated data. Our first set of experiments is similar to the procedure applied
in Section 2.4; as done there, for n = 3, 4, . . . , 150 we generate 10,000 different sequences, each
of length n. In this case, however, rather than limiting our sequences to only the states A and
B, we instead select states uniformly at random from A, B, and C. Once this is done, we then
restrict each sequence to the transitions in T·,A (i.e., transitions where the next state is not A)
and apply the marginal model procedure. The resulting estimates of P (B |A) are shown by the
solid (blue) line in Figure 4, while Figure 5a has the estimates for β1. Then, for our second set
of experiments we use a similar procedure, with the difference being that we select the states
uniformly at random from A, B, C, and D. The corresponding estimates for P (B |A) are shown
by the dotted (orange) line in Figure 4, with Figure 5b then containing the estimates for β1.

For the simulations with three total states (i.e., A, B, and C), the estimates of P (B |A)
in Figure 4 are all closely centered around 0.5, as desired. That is, given that we remove any
transitions to A in order to estimate P (B |A), we would expect B and C to appear roughly
equally. Then, for the simulations with four total states (i.e., A, B, C, and D), the estimates of
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Figure 4: Results from using either three or four states chosen uniformly at random. The proba-
bility estimates are all centered around 0.5 or 0.33, as desired.

P (B |A) in Figure 4 are centered around 0.33. This is the expected value, as we are removing
transitions to A and we thus expect B, C, and D to each appear roughly equally. Next, the β1

estimates in Figure 5a and Figure 5b, while somewhat noisy for the smaller sequence lengths,
overall seem to be centered around zero. Additionally, the 95% confidence intervals for the
point estimates of β1 are represented by the shaded regions in the two plots. Each figure has
148 confidence intervals, and in both cases 141 of these confidence intervals contain 0, which
works out to an estimated coverage probability of about 0.953. Thus, as we expect the coverage
probability of a 95% confidence interval to be about 0.95, overall this suggests that the point
estimates and confidence intervals for β1 are reasonably accurate in both sets of simulations.

4. CONTROLLING FOR MULTIPLE COMPARISONS

Consider a statistical analysis that tests several different null hypotheses, either on related data
sets or on a single data set. When following such a procedure, the probability of making a
discovery—i.e., rejecting a null hypothesis—is higher than in an analysis involving a single
null hypothesis. As such, it also follows that the probability of rejecting a true null hypothesis
increases as well; such errors are variously called false positives, false discoveries, or type I
errors. This is known in the statistics literature as the multiple comparisons problem.

In this section, we evaluate the performance of the marginal model procedure in regards to
false discoveries and the multiple comparisons problem. While doing so, we extend the work
from Matayoshi and Karumbaiah (2021a) by also evaluating the rate of false negatives, thereby
giving a more complete analysis of the procedure’s performance. Additionally, as discussed in
Section 1, Matayoshi and Karumbaiah (2021a) showed that in some cases the marginal model
procedure has an inflated rate of false positives—thus, to address this, we apply and evaluate
an adjustment taken from the biostatistics literature that is intended to help correct for this issue
(Li and Redden, 2015; Mancl and DeRouen, 2001). We use simulation studies for all of these
evaluations, an approach that is commonly applied to investigate the performance of multiple
comparisons procedures (Benjamini, 2010; Benjamini and Hochberg, 1995; Farcomeni, 2006;
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Figure 5: Estimates of β1 values from simulations using either three or four states. Shaded
regions show the 95% confidence intervals.

Kim and van de Wiel, 2008; Reiner-Benaim, 2007; Reiner-Benaim et al., 2007; Williams et al.,
1999; Yekutieli, 2008).

4.1. FALSE DISCOVERY RATE

The main focus of our current analysis is the false discovery rate (FDR). The FDR was in-
troduced by Benjamini and Hochberg (1995), and it has since found widespread use in many
scientific fields including education research (Williams et al., 1999), genetics (Reiner-Benaim,
2007; Storey and Tibshirani, 2003), and medical studies (Benjamini and Yekutieli, 2001). If we
let V be the number of false discoveries and S be the number of true discoveries, as done in
Benjamini and Hochberg (1995) we can define the quantity Q as

Q =

{
V

V+S
, if V + S > 0,

0, otherwise.
(4.1)

Then, the FDR is equal to E[Q], the expected proportion of false discoveries among all the
discoveries made.

The family-wise error rate (FWER), which is defined as the probability of making at least
one false discovery when performing a set of hypothesis tests, is another measure commonly
associated with the problem of multiple comparisons. Although the Bonferroni correction is
probably the most famous procedure used to control the FWER, there exist many other alter-
natives. However, while such procedures can be useful in situations in which a false discovery
must be avoided at all costs, such as clinical trials of new medical treatments (Goeman and
Solari, 2014), the downside to these methods is a loss of statistical power, resulting in an in-
creased likelihood of missing true discoveries. While procedures for controlling the FWER are
concerned with the occurrence of any false discoveries, FDR controlling procedures are slightly
more permissive, as they allow a certain proportion of the discoveries to be false. Thus, the ad-
vantage of FDR controlling procedures is that they typically have greater statistical power and,
as such, a better chance of correctly identifying true discoveries; the resulting trade-off is that
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false discoveries are more likely. However, this trade-off can be beneficial when a large number
of hypothesis tests are being conducted,6 or when the research is of a slightly more exploratory
nature.

In addition to introducing the FDR to the scientific literature, the authors in Benjamini and
Hochberg (1995) also outlined what is now known as the Benjamini-Hochberg (BH) procedure.
As shown there, the BH procedure is mathematically proven to control the FDR at a given
level when the statistical tests—or, equivalently, the test statistics—are independent. However,
in many practical applications the statistical tests may have some underlying dependence be-
tween them. With these situations in mind, further important work on controlling the FDR
appeared in Benjamini and Yekutieli (2001), where the authors proved that, in addition to the
independent case, the BH procedure is valid under certain dependency conditions between the
statistical tests. Among other scenarios, it was shown that the BH procedure properly controls
the FDR with multivariate normal test statistics having nonnegative correlations. Additionally,
the authors in Benjamini and Yekutieli (2001) introduced a new method—now known as the
Benjamini-Yekutieli (BY) procedure—for situations in which the BH procedure is not valid,
and they proved that this new procedure controls the FDR regardless of the dependence between
the tests.

In the remainder of this section, we discuss the application of the BH and BY procedures.
Consider a statistical analysis that involves the testing of m null hypotheses. Of these null hy-
potheses, m0 ≤ m are true null hypotheses—these correspond to the hypotheses that we expect
a statistical test to classify as not being significant—while the remaining m − m0 hypotheses
are the false null hypotheses. Note that, in practice, m0 is an unknown value. Let P1, . . . , Pm

be the p-values for the m statistical tests, with these values being listed in ascending order; the
corresponding null hypotheses are then represented by H1, . . . , Hm. The relationships between
these various terms can be summarized as follows.

Test is not significant Test is significant Total
True null hypotheses U V m0

False null hypotheses T S m−m0

(4.2)

• m = total number of hypotheses being tested

• m0 = number of true null hypotheses

• V = number of false positives (i.e., false discoveries or type I errors)

• S = number of true positives

• T = number of false negatives (i.e., type II errors)

• U = number of true negatives

Let q represent our chosen threshold (or, level) for controlling the FDR—this means we want
the FDR to be less than or equal to q. Define the value FDRmax = m0

m
q. If the statistical tests

are independent, or if they satisfy certain dependency conditions, it was shown by Benjamini
and Yekutieli (2001) that the FDR resulting from an application of the BH procedure is at most
FDRmax. Such an application works as follows. Assuming once again that the p-values are in

6As a relatively extreme example, statistical analyses in genetics research can involve thousands of hypothesis
tests, and in such cases FWER controlling procedures can be overly restrictive (Benjamini, 2010).
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ascending order, we find the largest integer k such that Pk ≤ k
m
q. Then, we simply reject all the

null hypotheses Hi for which i ≤ k.
Next, as the BY procedure controls the FDR under arbitrary dependence assumptions, it is

necessarily more conservative when rejecting a null hypothesis. This takes the form of a lower
threshold for the upper bound used to determine the “significance” of the p-values. Specifically,
we find the largest integer k such that Pk ≤ k

m·c(m)
q, where c(m) =

∑m
i=1

1
i
. Using this proce-

dure, it was shown in Benjamini and Yekutieli (2001) that the resulting FDR is bounded above
by FDRmax =

m0

m
q, regardless of the type of dependence between the statistical tests.

To see how these procedures work, we next look at an example. Suppose we run 10 separate
statistical tests (m = 10) that return the following p-values.

0.002, 0.008, 0.011, 0.013, 0.023,

0.028, 0.092, 0.214, 0.647, 0.853

Next, in Table 2 we compare these p-values to the formulas used for the BH and BY thresholds,
using a value of q = 0.1; for added context, we also include the results for the Bonferroni
correction. For each method, the thresholds that correspond to statistically significant p-values
are in bold.

Table 2: Example showing an application of the Benjamini-Hochberg, Benjamini-Yekutieli, and
Bonferroni procedures.

k Pk
BH BY Bonferroni
k
m
q k

m
∑m

i=1
1
i

q 1
m
q

1 0.002 0.01 0.003 0.01
2 0.008 0.02 0.007 0.01
3 0.011 0.03 0.010 0.01
4 0.013 0.04 0.014 0.01
5 0.023 0.05 0.017 0.01
6 0.028 0.06 0.020 0.01
7 0.092 0.07 0.024 0.01
8 0.214 0.08 0.027 0.01
9 0.647 0.09 0.031 0.01
10 0.853 0.1 0.034 0.01

For the BH procedure, we can see that k = 6 is the largest value for which Pk ≤ k
m
q, as we

have 0.028 < 0.06. Thus, the BH procedure, using a value of 0.1, would reject the null hypoth-
esis for the statistical tests corresponding to the lowest six p-values. Next, for the BY procedure
we see that k = 4 is the largest value for which Pk is less than the corresponding threshold; in
this case, we have 0.013 < 0.014. It is worth noting that, in this example, even though both
P2 and P3 are not below the corresponding thresholds, the BY procedure still classifies them
as being statistically significant. This is a feature of FDR controlling procedures that, in many
cases, allows them to be more permissive than procedures for controlling the FWER.
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4.2. METHODS

In this section, we outline the general procedure we follow for our multiple comparisons simula-
tion studies. Since evaluating multiple comparisons procedures requires knowledge of whether
a null hypothesis is true, and as this is not typically known with real data, simulations are com-
monly used for such analyses. In all of our experiments, we begin by generating simulated data
according to a given probability distribution. While the specifics of this procedure vary slightly
for our different experiments, the common thread is that this must be done in a way as to have
control over whether or not each null hypothesis is true. Specifically, we have a single param-
eter that controls whether or not a subset of the states are related; thus, when this parameter is
non-zero the null hypothesis that the states are independent is false.

Another important detail is that, as we are focusing on one particular scenario, we can gen-
erate simulated sequences of states specific to this scenario. By simulating the underlying data,
we are attempting to evaluate the BH procedures in conditions that are as realistic as possible.
In comparison, other studies that are more general in nature may simulate the distribution of the
test statistics, rather than the underlying data, when evaluating multiple comparisons procedures.

After generating the data for a simulation run, we perform our statistical tests and compute
the corresponding p-values. Once this is done, we then apply the BH procedure for various
threshold values q; specifically, we use 0.05, 0.1, and 0.15 in all our evaluations. While a value
of 0.05 is commonly used, it has been argued that this threshold may be too low for some
applications—for example, the sections on multiple comparisons and the FDR in James et al.
(2021) and McDonald (2014) have useful discussions of this issue. As such, we evaluate a range
of values in our simulations. Based on the statistical significance results from our applications
of the BH procedure, we can compute Q, the proportion of false discoveries among all the
discoveries made, using (4.1). To obtain our estimate of the FDR, we then compute the average
of Q over a total of 10,000 simulation runs. For the various values of q, we compare these FDR
estimates to the values of FDRmax as defined in Section 4.1.

At this point, it is worth mentioning that the value of Q—and, hence, the estimated FDR
value—can be very different from the false positive rate.7 Using the notation in (4.2), the false
positive rate can be written as V

V+U
. In comparison, Q is computed with the formula V

V+S
, which

has a different denominator. Thus, while the FDR is the expected proportion of false discoveries
among all the rejected null hypotheses, the false positive rate is the (expected) proportion of
false discoveries among all the true null hypotheses. Consider the following example. Assume
we are testing 20 total hypotheses, all of which are true null hypotheses (m0 = m = 20).
Furthermore, assume that one false positive is recorded. Then, the false positive rate for this set
of tests would be equal to 1

1+19
= 0.05. However, applying (4.1) gives a value of Q = 1

1+0
= 1.

This discrepancy is something to keep in mind as we analyze the results from our simulation
studies in subsequent sections.

4.3. EXPERIMENTAL SETUP

Our numerical experiments for sequential data evaluate the BH procedure on simulated se-
quences of states. Each of these sequences could represent, for example, a student’s affective
states while working in a learning system. To generate a sequence of states, we start with the

7That is, while “false discovery” and “false positive” are used interchangeably, the terms “false discovery rate”
and “false positive rate” have different definitions.
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Table 3: Mean probability distribution used to generate the simulated sequences of states. Each
entry represents the probability of making a transition to the next state (column), given the pre-
vious state (row). To simulate the differing behaviors of individual students, these starting rates
are randomly adjusted each time a new sequence is generated—importantly, however, the distri-
bution of the average rates matches what is shown in the table below.

prev
next

A B C D E

A 0.2 0.2 + γ 0.2 0.2− γ 0.2
B 0.2 0.2 0.2 0.2 0.2
C 0.2 0.2− γ 0.2 0.2 + γ 0.2
D 0.2 0.2 0.2 0.2 0.2
E 0.2 0.2 0.2 0.2 0.2

probability distribution given in Table 3; each entry in this table gives the probability of sam-
pling the next state (column) based on the value of the previous state (row). For our simulations,
we use two different values of γ: 0, which results in all 25 hypotheses being true null hypothe-
ses; and 0.05, which results in 21 true null hypotheses, out of the 25. Note that while this is
the distribution used for all of the simulations in Matayoshi and Karumbaiah (2021a), a possible
criticism of this methodology is that using the exact same distribution to generate each sequence
of states is not entirely realistic, as students likely have some variation in how often they transi-
tion to the different states. Thus, we use the following approach to simulate this variation at the
student level. When generating each sequence of states, we randomly sample a value α from the
following list: 0.04, 0.08, 0.12. After obtaining α, we randomly select two states; for the first
state we add α to each of the values in the corresponding column of Table 3, and then for the
second state we subtract α from each of the values in the column corresponding to that state.

To help make the above explanation clearer, we next go through the process of generating
an example sequence using a value of γ = 0.05. We begin by randomly selecting a value of α;
suppose that α = 0.12 is obtained. Next, we randomly select two states; for this, suppose that
B and E are chosen, in that order. Thus, according to the procedure outlined in the previous
paragraph, we first add α = 0.12 to each of the values in the B column of Table 3; since
γ = 0.05, the resulting values are 0.37, 0.32, 0.27, 0.32, and 0.32. Next, we subtract α = 0.12
from each of the values in the E column of Table 3; as these values all start at 0.2, we end up
with each value being shifted down to 0.08. The resulting probability distribution is shown in
Table 4. These values can be interpreted as follows. Suppose that C is the previous state. In this
case, A has a probability of 0.2 of being the next state, B has a probability of 0.32 of being the
next state, and so on. Finally, in Table 5 we show the results from applying the marginal model
procedure to a simulated sequence of 200 states, with each state being generated according to
the probability distribution in Table 4.

As mentioned previously, for our simulations we use γ values of 0 and 0.05. For each value
of γ, we generate n sequences consisting of 20 states each. To generate these sequences, the
first state in each sequence is sampled randomly from the five choices. Next, α and two states
are randomly chosen, the distribution in Table 3 is updated based on these values, and then all
subsequent states are sampled according to this new probability distribution. For each set of n
sequences we evaluate our statistical tests (described in Sections 4.5 and 4.6) and then compute
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Table 4: Example probability distribution used to generate one sequence of simulated states,
using γ = 0.05. In this example, all the base rates in column B have been shifted up by α = 0.12,
while all the base rates in column E have been shifted down by α = 0.12.

prev
next

A B C D E

A 0.2 0.37 0.2 0.15 0.08
B 0.2 0.32 0.2 0.2 0.08
C 0.2 0.27 0.2 0.25 0.08
D 0.2 0.32 0.2 0.2 0.08
E 0.2 0.32 0.2 0.2 0.08

Table 5: Marginal model coefficient p-values from one simulated sequence consisting of 200
states, with the states generated according to the probability distribution in Table 4. The bold
p-values correspond to the four false null hypotheses that occur with a value of γ = 0.05—note
that, as expected, these are by far the smallest p-values.

prev
next

A B C D E

A 0.273 0.000 0.529 0.000 0.184
B 0.477 0.214 0.593 0.772 0.080
C 0.689 0.012 0.966 0.000 0.431
D 0.476 0.264 0.173 0.247 0.953
E 0.450 0.991 0.786 0.526 0.934

the resulting value for Q; this constitutes one simulation run. We then perform 10,000 simulation
runs for each value of n in order to obtain an estimate of the true FDR. For this analysis, we use
the following values of n: 25, 50, 100, and 200.

As before, let m denote the total number of statistical tests, with m0 ≤ m representing
the number of true null hypotheses. Using the BH procedure with a value of γ = 0, we have
m0 = m; as such, we would expect the FDR to be less than FDRmax = 25

25
q = q if the BH

conditions are satisfied. Then, for all values of γ > 0 we would expect the FDR to be less than
FDRmax = 21

25
q, assuming the BH conditions are satisfied, as m0 = 21 of the tests are true null

hypotheses.

4.4. INFLATED RATE OF FALSE POSITIVES

The simulation results in Matayoshi and Karumbaiah (2021a) suggested that using the BH pro-
cedure did not control the FDR at the expected rate. While it is an open question if the theoretical
conditions for applying the BH procedure are satisfied, it was at least shown by Matayoshi and
Karumbaiah (2021a) that the statistical tests are not independent of each other. However, set-
ting aside the BH procedure for the moment, previous evaluations of marginal models have
demonstrated that the rate of false positives can depend on the number of clusters—or, groups—
appearing in the analysis, and some authors have suggested that at least 40 are needed for ad-
equate performance and well-calibrated p-values (Mancl and DeRouen, 2001; Li and Redden,
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Figure 6: Relative frequency histograms comparing the p-values using (a) robust standard er-
rors and a normal distribution and (b) standard errors with the Mancl-DeRouen correction and
a t-distribution. The results in (a) show an overabundance of p-values less than 0.2, with an es-
pecially high number less than 0.05. In comparison, the values in (b) are distributed much more
evenly from 0 to 1.

2015). While the simulations in Matayoshi and Karumbaiah (2021a) used at least 50 clusters,
our next analysis suggests that there are issues with the resulting p-values from these simula-
tions.

In Figure 6a we plot the p-values from a set of 10,000 simulation runs, with 50 sequences
being generated in each run—as each sequence of states is considered a separate cluster, this
means we have 50 clusters in each simulation run. For these simulations, the standard errors
are computed using the “robust” setting, which is the default option of the statsmodels
GEE class—these standard errors are derived using the so-called sandwich estimator of Liang
and Zeger (1986). After obtaining the standard errors, these are divided into the regression
coefficients, with the p-values then being computed using a standard normal distribution—note
that this is the procedure used in the simulation study of Matayoshi and Karumbaiah (2021a).
For this particular set of simulations we use a value of γ = 0, which means that only true null
hypotheses are being tested—thus, for these simulations we want the p-values to be uniformly
distributed from 0 to 1, as this ensures an accurate rate of false positives. For example, if we were
to use a significance level of 0.05, we would expect to incorrectly reject a true null hypothesis
about 5% of the time. However, as shown in Figure 6a the p-values are not uniformly distributed,
as there is an inflated amount of small p-values. Thus, such a bias would very likely explain the
higher-than-expected FDR rates observed in Matayoshi and Karumbaiah (2021a).

In an attempt to correct for this bias, we borrow a technique from the biostatistics and epi-
demiology literature. The first step in applying this technique is to use the “bias reduced” op-
tion in the statsmodels GEE implementation—using this option returns standard errors that
are computed with the adjustment outlined by Mancl and DeRouen (2001). Second, follow-
ing the recommendation of Mancl and DeRouen (2001), the p-values are computed using a
t-distribution with degrees of freedom equal to N − k − 1, where N is the number of clusters
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Figure 7: Comparison of the estimated FDR using a value of γ = 0; the BH procedure; and
either robust standard errors with a normal distribution, or MD-corrected standard errors with a
t-distribution. Vertical lines represent the 99% confidence interval for each estimated FDR value.
To avoid overlapping points, the plotted x-values for the two methods—robust standard errors
vs. MD-corrected standard errors—have been shifted by −3 and +3, respectively.

and k is the number of independent variables; in our case, we have k = 1. These adjusted
p-values, which we refer to as MD-corrected p-values, have been shown to address the bias that
appears with small numbers of clusters, and they have also been shown to work well when the
sizes of the clusters vary (Mancl and DeRouen, 2001; Snijders and Bosker, 2012). As seen in
Figure 6b, the resulting p-values are distributed much more evenly from 0 to 1 when compared to
the p-values in Figure 6a. Thus, for our subsequent simulations concerning the marginal model
procedure and multiple comparisons, we analyze the results using MD-corrected p-values.

While MD-corrected p-values are available in many software implementations, we also in-
vestigated a simpler correction proposed by MacKinnon and White (1985). This correction
simply scales the robust standard error values by the factor N

N−k−1
; then, as with MD-corrected

p-values, a t-distribution with N − k − 1 degrees of freedom is used to compute the p-values.
The overall results were similar to those from using MD-corrected p-values.8 Thus, while MD-
corrected p-values are generally recommended over this simpler correction (Angrist and Pis-
chke, 2008; Mancl and DeRouen, 2001), in the absence of an available software implementa-
tion of the MD-correction, we believe that the simpler adjustment from MacKinnon and White
(1985) is a reasonable alternative.

4.5. EVALUATION OF THE BH PROCEDURE

In our next set of experiments, we run the previously described numerical simulations and eval-
uate the performance of the BH procedure. Our first set of results is shown in Figure 7, where
we use a value of γ = 0; that is, these simulations have no dependencies between the different
states, which means there are no false null hypotheses. In these results, we show the FDR esti-
mates using the p-values computed with robust standard errors and a normal distribution (green
triangles), along with the p-values using MD-corrected standard errors and a t-distribution (blue
circles). In both cases, the BH procedure is applied using various threshold values q. Overall,

8To facilitate comparisons between the two methods, the Python module we have included with this work
computes both MD-corrected p-values and p-values using the adjustment from MacKinnon and White (1985).
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Figure 8: Comparison of the estimated FDR using a value of γ = 0.05; the BH procedure; and
either robust standard errors with a normal distribution, or MD-corrected standard errors with a
t-distribution. Vertical lines represent the 99% confidence interval for each estimated FDR value.
To avoid overlapping points, the plotted x-values for the two methods—robust standard errors
vs. MD-corrected standard errors—have been shifted by −3 and +3, respectively.

we can see that using MD-corrected p-values leads to much better control of the FDR, especially
when the number of sequences is small. For example, using a q value of 0.1, the FDR estimates
using the robust standard errors are as high as 0.2; contrast this with the results from using
the MD-corrected p-values, where the highest FDR estimates just barely exceed the theoretical
maximum of FDRmax = 0.1.

In Figure 8 we show the results from our simulations using a value of γ = 0.05, which adds
a dependence between 4 of the 25 pairs of states—this results in 4 false null hypotheses out of
the 25 total hypotheses. As with the completely independent case, the MD-corrected p-values
give much better control of the FDR, with the difference again being most pronounced when
the number of sequences is small. Thus, combining the two sets of experiments in this sec-
tion, the overall results suggest that the BH procedure performs well when used in combination
with marginal models and MD-corrected p-values, thus addressing one of the issues reported by
Matayoshi and Karumbaiah (2021a).

4.6. EXCLUDING SELF-TRANSITIONS

Given the improved performance of the BH procedure in the previous section, the goal of our
next analysis is to evaluate the procedure when a researcher would like to remove the influence
of self-transitions. To do this, we begin with the simulated sequences from our experiments
in Section 4.5. Then, we take these sequences and apply our chosen model—for this analysis
we compare the L∗ statistic with the marginal model procedure outlined in Section 3.1. To test
for statistical significance when using L∗, we follow the procedure outlined in Matayoshi and
Karumbaiah (2020) and use a two-tailed t-test on the L∗ values, and we then apply the BH
procedure to the resulting p-values. The results for γ = 0 are shown in Figure 9. Note there are
several examples where the estimated FDR values using L∗ and the BH procedure are clearly
above the FDRmax line. Similar to the results from our previous experiments that used the
marginal model procedure and robust standard errors, the worst cases occur with the smallest
number of sequences. In comparison, using the marginal model with MD-corrected p-values
and the BH procedure gives good control of the FDR, with all the estimated FDR values falling
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Figure 9: Comparison of the estimated FDR using a value of γ = 0; the BH procedure; and
either L∗ or the marginal model with MD-corrected p-values. Vertical lines represent the 99%
confidence interval for each estimated FDR value. To avoid overlapping points, the plotted x-
values for L∗ and the marginal model have been shifted by −3 and +3, respectively.

below the theoretical FDRmax line.
We next evaluate the procedures when some dependence occurs between the states by using

a value of γ = 0.05. Additionally, to give a more nuanced comparison between the L∗ and
marginal model procedures, we also evaluate the resulting true positive rates (TPR). To compute
the TPR, we use the following approach. First, note that a value of γ = 0.05 results in 4 false
null hypotheses out of the 20 total null hypotheses. Then, for each simulation run we compute
the proportion of these four false null hypotheses that are classified as statistically significant
after the BH procedure is applied. We then estimate the true value of the TPR by computing the
average of these proportions over all of our 10,000 simulation runs.

The results evaluating both the FDR and TPR are shown in Figure 10. The top row of the
figure shows the estimates for the FDR, where we can see that, as before, the FDR values from
using L∗ are typically higher than expected; in contrast, we can see that using the marginal
model with MD-corrected p-values gives much stricter control of the FDR. Additionally, the
TPR results in the second row of Figure 10 are illuminating. Given that the use of L∗ leads
to higher FDR values in all our evaluated cases, it is surprising that the marginal model TPR
values are either comparable to the TPR values from L∗—such as with the smaller numbers of
sequences—or substantially better than the TPR values for L∗. As an example of the latter case,
with an x-value of 100 sequences and using q = 0.1, the estimated TPR value for the marginal
model is about 0.63, much higher than the estimated value of 0.42 using L∗. Thus, the results
of these simulations suggest that the marginal model procedure using MD-corrected p-values
should be preferred, as its use leads to better control of the FDR in comparison to L∗, while
simultaneously giving either comparable or improved TPR values.

5. APPLICATION TO REAL STUDENT DATA

5.1. AFFECT DYNAMICS DATA SETS

Our next analysis evaluates the performance of the marginal model procedure on actual stu-
dent data. Specifically, we apply the technique to two different data sets consisting of affect
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Figure 10: Comparison of the estimated FDR—(a) through (c)—and TPR—(d) through (f)—
using a value of γ = 0.05; the BH procedure; and either L∗ or the marginal model with MD-
corrected p-values. Vertical lines represent the 99% confidence interval for each estimated FDR
value (confidence intervals for the estimated TPR values are too small to be shown, as they are
completely hidden behind the markers in all cases). To avoid overlapping points, the plotted
x-values for L∗ and the marginal model have been shifted by −3 and +3, respectively.
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sequences. Our first data set comes from students working in the Physics Playground learning
environment (Shute and Ventura, 2013). The Baker-Rodrigo-Ocumpaugh Monitoring Protocol
(BROMP) (Ocumpaugh et al., 2015) was used to record the affective states of 179 high school
students working within this environment (Andres et al., 2015). For our purposes, we are inter-
ested in the states flow (FLO), confusion (CON), frustration (FRU), and boredom (BOR); the
remaining states have all been merged into the dummy state NA. The recorded sequences for
these students are relatively long, with the mean and median lengths being 135.2 and 126.0,
respectively, with a standard deviation of 68.9; the minimum sequence length is 47, while the
maximum is 272.

In contrast to the Physics Playground data, our second data set has very different charac-
teristics. Namely, the sequences are much shorter, which makes for an interesting analysis, as
we can see how the biases that have been observed in the simulated data affect the results from
actual student data. This particular data set consists of sequences from 782 students working in
the ASSISTments platform (Heffernan and Heffernan, 2014), with BROMP again being used to
record the student affective states (Botelho et al., 2017); as before, we focus on the states flow
(FLO), confusion (CON), frustration (FRU), and boredom (BOR), with any remaining states
being merged into the dummy state NA. The mean and median lengths of the sequences in this
data set are 9.6 and 9.0, respectively, with a standard deviation of 5.2. The minimum sequence
length is 3, while the maximum is 37.

5.2. RESULTS: MARGINAL MODEL AND THE L STATISTIC

Based on the experiments from Bosch and Paquette (2021), as well as our results in Section 2.4,
we expect the relatively long sequence lengths in the Physics Playground data to minimize the
bias in the L statistic values. In comparison, we expect to see some evidence of this bias in
the ASSISTments data, due to the very short sequence lengths. The results from applying the
marginal model, as well as the corresponding L values, are shown in Tables 6 and 7. For the
marginal model we use an exchangeable correlation structure as, overall, it gives better perfor-
mance in comparison to the autoregressive structure.9

To adjust for the number of statistical tests being performed, we have highlighted—in bold—
the transition pairs that are statistically significant after applying the Benjamini-Hochberg (BH)
procedure with a value of q = 0.1. Regarding this choice of q, we first note that the results from
our simulations in the previous section showed the combination of the BH procedure and MD-
corrected p-values controlled the FDR at or below the expected level in all our experiments.
Additionally, while a threshold value of q = 0.05 is commonly used with the BH procedure,
arguments have been made that this is too low for many situations—for example, if the analysis
is more exploratory in nature, or if follow up studies are relatively inexpensive—and that this
choice of value may be due to confusion between the FDR and the false positive rate (James
et al., 2021; McDonald, 2014). Thus, for these reasons we choose our value of q = 0.1, and
we submit that this is a reasonable threshold for analyzing affect dynamics data. Lastly, we
note that the focus in this analysis is more on comparing the marginal model and L statistic
results, and less about identifying and interpreting significant affect transitions. To that end, and

9While many applications of the autoregressive structure deal with time scales on the order of weeks, months,
or years—e.g., epidemiological studies—the time scales for our data sets are much smaller, on the order of minutes
or hours. Thus, due to these small time scales it is plausible that the dependence in our data is relatively constant
over time, thereby making the exchangeable structure a better fit.
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to more faithfully simulate the results from an actual study of affect transitions, we perform the
BH procedure twice per data set: once for all the marginal model values, and then separately for
all the L statistic values.

Starting with the results from the Physics Playground data, it appears that the longer se-
quences in this data set have mitigated the effects of the bias with the L values. That is, there
are only four transition pairs in the Physics Playground data for which the sign of the L statistic
differs from the sign of the corresponding β1 value; in each of these examples, the confidence
interval for β1 is relatively wide and contains zero, indicating there is a fair amount of uncer-
tainty with the sign of the parameter. Furthermore, all of the self-transitions values, for both β1

and L, are positive, with p ≪ 0.001 in all cases; note that while the bias with the L statistic can
heavily skew the estimates for self-transitions in the negative direction—e.g., see Figure 1—this
does not appear to be the case here, most likely because of the long sequences of transitions.

Next, looking at the results for the ASSISTments data, there appears to be evidence of
the bias in the L values for these shorter sequences. For example, recall that on short se-
quences of simulated data, the L statistic returns considerably lower than expected values for
self-transitions. Thus, it is instructive to see that in all self-transition cases the L values are
negative and significantly different from zero, while four of the five corresponding β1 values
are positive and significantly different from zero. For comparison, of the 20 transitions between
different states, there are only 4 transition pairs that have negative L values, none of which are
significantly different from zero; thus the positive bias when the L statistic is applied to transi-
tions between different states seems to be a factor. Furthermore, in all four of these cases with
negative L values, the corresponding β1 values are also negative, possibly indicating that the
negative relationships between the states are strong enough to overcome the positive bias with
the L statistic. Thus, the overall results on the ASSISTments data set are seemingly consistent
with the biases that appear in the experiments on simulated data.

5.3. RESULTS: NO SELF-TRANSITIONS

In this section, we analyze the same data sets with the influence of self-transitions removed. For
this analysis, we compare the results from using the marginal model procedure with those from
an application of L∗. Starting with the Physics Playground data set, in Table 8 we can see that in
all but one row the signs of β1 and L∗ agree—in the one case they do not agree, transitions from
BOR to FLO, there is a large amount of uncertainty associated with the sign of the L∗ value.

Next, in Table 9 we show the results on the ASSISTments data set with the influence of
self-transitions removed. Here, there is a lot more uncertainty in all of the estimates—this can
be seen, for example, in the generally large confidence intervals for β1 that contain zero in the
majority of cases. Thus, it is difficult to make a direct comparison of the procedures on this data
set once self-transitions have been removed. However, it is worth comparing these results with
those in Table 7, where self-transitions have not been removed from the ASSISTments data.
Specifically, the marginal model estimates in Table 7 are in general more precise, which can
be partly explained by the fact that removing self-transitions leaves less data for the model to
construct its estimates with. The difference is particularly large for transitions starting in FLO,
as overall this is the most common state in the ASSISTments data. That is, while the full data
set contains 6,755 transitions, only 2,325 transitions remain after removing transitions to FLO.
In comparison, starting with the full data set and removing transitions to CON leaves 6,344
transitions; then, for the remaining states of FRU, BOR, and NA, starting with the full data set
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Table 6: Comparison of the marginal model and L statistic on the Physics Playground (An-
dres et al., 2015) data set. Bold values are statistically significant after applying the Benjamini-
Hochberg procedure with a value of q = 0.1. Note that, when applying the Benjamini-Hochberg
procedure, we have applied it separately for the marginal model values and the L values, in order
to simulate the workflow in a typical study of affect transitions.

prev next
All transitions: Physics Playground (longer sequences)

Marginal model L statistic
β1 p-value 95% CI x = 0 x = 1 Mean p-value

FLO FLO 0.78 0.000 (0.67, 0.89) 0.61 0.78 0.13 0.000
CON -0.47 0.000 (-0.63, -0.32) 0.08 0.05 -0.01 0.000
FRU -0.63 0.000 (-0.81, -0.45) 0.08 0.04 -0.01 0.000
BOR -1.43 0.000 (-1.72, -1.14) 0.06 0.02 -0.02 0.000
NA -0.37 0.000 (-0.48, -0.25) 0.15 0.11 -0.01 0.000

CON FLO -0.62 0.000 (-0.76, -0.48) 0.74 0.60 -0.71 0.003
CON 1.33 0.000 (1.10, 1.57) 0.05 0.18 0.09 0.000
FRU 0.38 0.001 (0.16, 0.59) 0.05 0.07 0.04 0.013
BOR -0.78 0.068 (-1.61, 0.06) 0.03 0.01 -0.02 0.014
NA -0.06 0.468 (-0.21, 0.10) 0.13 0.12 0.01 0.700

FRU FLO -0.81 0.000 (-0.98, -0.64) 0.74 0.56 -0.42 0.001
CON 0.14 0.366 (-0.17, 0.45) 0.06 0.07 -0.00 0.983
FRU 1.60 0.000 (1.35, 1.85) 0.04 0.18 0.07 0.000
BOR 0.38 0.037 (0.02, 0.75) 0.03 0.04 0.03 0.018
NA -0.00 0.979 (-0.19, 0.18) 0.12 0.12 0.03 0.163

BOR FLO -1.28 0.000 (-1.53, -1.03) 0.74 0.44 -0.77 0.001
CON -1.16 0.001 (-1.83, -0.49) 0.06 0.02 -0.05 0.000
FRU -0.17 0.296 (-0.48, 0.15) 0.05 0.04 0.01 0.390
BOR 2.96 0.000 (2.46, 3.46) 0.02 0.27 0.23 0.000
NA -0.25 0.142 (-0.58, 0.08) 0.13 0.10 -0.02 0.400

NA FLO -0.17 0.008 (-0.29, -0.04) 0.73 0.70 -0.01 0.804
CON -0.25 0.004 (-0.42, -0.08) 0.06 0.05 -0.01 0.076
FRU -0.47 0.000 (-0.65, -0.28) 0.05 0.03 -0.02 0.010
BOR -0.78 0.003 (-1.31, -0.26) 0.03 0.02 -0.02 0.001
NA 0.65 0.000 (0.51, 0.80) 0.11 0.20 0.06 0.000
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Table 7: Comparison of the marginal model and L statistic on the ASSISTments (Botelho et al.,
2017) data set. Bold values are statistically significant after applying the Benjamini-Hochberg
procedure with a value of q = 0.1. Note that, when applying the Benjamini-Hochberg procedure,
we have applied it separately for the marginal model values and the L values, in order to simulate
the workflow in a typical study of affect transitions.

prev next
All transitions: ASSISTments (shorter sequences)

Marginal model L statistic
β1 p-value 95% CI x = 0 x = 1 Mean p-value

FLO FLO 0.51 0.000 (0.39, 0.64) 0.57 0.69 -0.09 0.000
CON -0.35 0.002 (-0.58, -0.13) 0.08 0.06 0.02 0.001
FRU -0.21 0.171 (-0.52, 0.09) 0.04 0.03 0.00 0.285
BOR -0.38 0.000 (-0.56, -0.20) 0.12 0.08 0.03 0.002
NA -0.61 0.000 (-0.77, -0.46) 0.22 0.13 -0.01 0.293

CON FLO -0.02 0.871 (-0.26, 0.22) 0.64 0.64 0.18 0.004
CON 0.77 0.000 (0.38, 1.16) 0.06 0.12 -0.12 0.000
FRU 0.35 0.273 (-0.28, 0.98) 0.03 0.04 0.00 0.797
BOR -0.12 0.502 (-0.49, 0.24) 0.10 0.09 -0.02 0.339
NA -0.02 0.879 (-0.31, 0.27) 0.16 0.16 0.03 0.394

FRU FLO -0.48 0.000 (-0.75, -0.21) 0.64 0.53 -0.07 0.401
CON 0.48 0.071 (-0.04, 1.00) 0.06 0.10 0.04 0.163
FRU 0.04 0.961 (-1.42, 1.49) 0.03 0.03 -0.10 0.000
BOR 0.52 0.012 (0.12, 0.93) 0.10 0.15 0.05 0.233
NA 0.40 0.021 (0.06, 0.75) 0.16 0.22 0.09 0.032

BOR FLO -0.28 0.004 (-0.47, -0.09) 0.65 0.58 0.18 0.001
CON -0.31 0.138 (-0.71, 0.10) 0.06 0.05 -0.01 0.314
FRU 0.31 0.231 (-0.20, 0.81) 0.03 0.04 0.01 0.280
BOR 0.73 0.000 (0.39, 1.07) 0.09 0.16 -0.09 0.000
NA 0.07 0.555 (-0.17, 0.31) 0.16 0.17 0.01 0.625

NA FLO -0.37 0.000 (-0.52, -0.23) 0.65 0.57 0.11 0.033
CON 0.07 0.596 (-0.20, 0.34) 0.06 0.07 0.01 0.434
FRU -0.06 0.780 (-0.49, 0.37) 0.03 0.03 0.00 0.771
BOR -0.07 0.528 (-0.28, 0.15) 0.10 0.09 0.02 0.122
NA 0.79 0.000 (0.59, 0.99) 0.14 0.26 -0.05 0.002
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and removing transitions to any one of these states leaves us with the following numbers of
transitions: 6,532 (FRU), 6,164 (BOR), and 5,655 (NA).

6. DISCUSSION

In this work, we have attempted to give a comprehensive examination of several issues related to
the analysis of transitions in sequential data. In our first analysis, we addressed the problem dis-
cussed in Bosch and Paquette (2021), where it was shown that several commonly used transition
metrics suffer from a bias that can inflate the importance of transition pairs. After replicating
the numerical experiments in Bosch and Paquette (2021), we next presented a theoretical ex-
planation for the underlying cause of this bias, where we argued that it is a consequence of the
averaging procedure commonly used in the computations of transition metrics. Based on these
results, we then outlined a procedure for measuring the importance and significance of transi-
tion pairs. This procedure takes the form of a logistic regression that estimates the probability of
transitioning to a state, depending on the occurrence of a previous state; the parameters for the
regression were obtained using marginal models. To show that this procedure does not suffer
from the bias inherent in other transition metrics, we examined its effectiveness on simulated
data.

Our second analysis looked at the special case of removing the influence of self-transitions.
As it was shown in Karumbaiah et al. (2019) that excluding self-transitions has unintended
consequences when used in conjunction with the L statistic, many recent works have proposed
fixes for this issue (Bosch and Paquette, 2021; Karumbaiah et al., 2019; Karumbaiah et al., 2021;
Matayoshi and Karumbaiah, 2020). However, in the interest of having a uniform procedure that
can be used whether or not a researcher wants to remove the influence of self-transitions, we
proposed an extension of the marginal model procedure to this specific situation. After giving
theoretical arguments for why the proposed procedure is valid in this situation, we then evaluated
its performance on simulated data to show that it does not suffer from the aforementioned issues.

We next discussed the problem of controlling for multiple comparisons when analyzing tran-
sitions in sequential data. In particular, the results in Matayoshi and Karumbaiah (2021a) sug-
gested that there are issues with applying the Benjamini-Hochberg (BH) procedure to the anal-
ysis of sequential data, with their experiments showing this leads to an inflated rate of false
discoveries in many situations. Thus, to address this issue we borrowed a technique from the
biostatistics literature that adjusts the standard errors and p-values resulting from our estimates
of the marginal model regression coefficients. We then evaluated this corrected procedure on
simulated data, where we saw that, after applying these adjustments, the BH procedure gave
good control of the false discovery rate (FDR). Additionally, in the case when self-transitions
are removed, we compared the marginal model procedure to the performance of L∗, a statis-
tic specifically developed for use when one wants to remove the influence of self-transitions.
We saw in all cases that using the marginal model procedure led to better control of the FDR
in comparison to L∗, with the differences being especially notable with smaller numbers of se-
quences. Furthermore, a comparison of the true positive rates (TPR) revealed that, in most cases,
the marginal model is also better at identifying the true discoveries, sometimes substantially so.
Thus, these results presented strong evidence favoring the use of the marginal model procedure
over L∗.

Finally, we concluded by synthesizing all of these results with an analysis on real student
data. Here, we saw further evidence that the marginal model procedure does not suffer from the
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Table 8: Comparison of the marginal model and L∗ on the Physics Playground (Andres et al.,
2015) data set with self-transitions removed. Bold values are statistically significant after apply-
ing the Benjamini-Hochberg procedure with a value of q = 0.1. Note that, when applying the
Benjamini-Hochberg procedure, we have applied it separately for the marginal model values and
the L∗ values, in order to simulate the workflow in a typical study of affect transitions.

prev next
No self-transitions: Physics Playground (longer sequences)

Marginal model L∗

β1 p-value 95% CI x = 0 x = 1 Mean p-value
FLO FLO – – – – – – –

CON 0.14 0.036 (0.01, 0.27) 0.21 0.24 0.02 0.033
FRU -0.06 0.444 (-0.20, 0.09) 0.20 0.19 -0.03 0.009
BOR -0.69 0.000 (-0.87, -0.51) 0.13 0.07 -0.05 0.000
NA 0.24 0.000 (0.12, 0.36) 0.45 0.51 0.02 0.361

CON FLO -0.22 0.008 (-0.39, -0.06) 0.78 0.74 -0.70 0.098
CON – – – – – – –
FRU 0.59 0.000 (0.38, 0.80) 0.05 0.09 0.05 0.003
BOR -0.42 0.218 (-1.09, 0.25) 0.03 0.02 -0.01 0.088
NA 0.13 0.133 (-0.04, 0.30) 0.13 0.15 0.02 0.345

FRU FLO -0.41 0.000 (-0.55, -0.26) 0.77 0.69 -0.32 0.017
CON 0.42 0.007 (0.11, 0.72) 0.07 0.10 0.01 0.220
FRU – – – – – – –
BOR 0.62 0.001 (0.27, 0.97) 0.03 0.06 0.04 0.007
NA 0.15 0.152 (-0.05, 0.35) 0.13 0.15 0.04 0.074

BOR FLO -0.21 0.134 (-0.49, 0.06) 0.75 0.71 0.01 0.961
CON -0.49 0.105 (-1.09, 0.10) 0.07 0.04 -0.04 0.002
FRU 0.39 0.009 (0.10, 0.68) 0.05 0.08 0.03 0.143
BOR – – – – – – –
NA 0.38 0.056 (-0.01, 0.78) 0.13 0.18 0.03 0.347

NA FLO 0.39 0.000 (0.24, 0.54) 0.83 0.88 0.26 0.001
CON -0.15 0.088 (-0.33, 0.02) 0.07 0.06 -0.01 0.192
FRU -0.41 0.000 (-0.62, -0.21) 0.06 0.04 -0.02 0.011
BOR -0.65 0.015 (-1.17, -0.13) 0.04 0.02 -0.01 0.012
NA – – – – – – –
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Table 9: Comparison of the marginal model and L∗ on the ASSISTments (Botelho et al., 2017)
data set with self-transitions removed. Bold values are statistically significant after applying
the Benjamini-Hochberg procedure with a value of q = 0.1. Note that, when applying the
Benjamini-Hochberg procedure, we have applied it separately for the marginal model values and
the L∗ values, in order to simulate the workflow in a typical study of affect transitions.

prev next
No self-transitions: ASSISTments (shorter sequences)

Marginal model L∗

β1 p-value 95% CI x = 0 x = 1 Mean p-value
FLO FLO – – – – – – –

CON 0.20 0.055 (-0.00, 0.40) 0.17 0.20 0.02 0.213
FRU 0.20 0.161 (-0.08, 0.49) 0.08 0.10 0.01 0.323
BOR -0.06 0.483 (-0.23, 0.11) 0.26 0.25 0.01 0.793
NA -0.13 0.106 (-0.28, 0.03) 0.49 0.46 -0.06 0.048

CON FLO -0.00 0.980 (-0.25, 0.25) 0.68 0.68 -0.04 0.721
CON – – – – – – –
FRU 0.44 0.182 (-0.21, 1.09) 0.03 0.05 0.00 0.938
BOR -0.16 0.468 (-0.60, 0.27) 0.11 0.09 -0.05 0.101
NA 0.02 0.886 (-0.29, 0.33) 0.17 0.18 -0.02 0.667

FRU FLO -0.64 0.000 (-0.93, -0.35) 0.66 0.51 -0.29 0.036
CON 0.53 0.053 (-0.01, 1.07) 0.07 0.11 0.03 0.372
FRU – – – – – – –
BOR 0.49 0.037 (0.03, 0.94) 0.10 0.16 0.03 0.551
NA 0.42 0.023 (0.06, 0.78) 0.17 0.23 0.05 0.216

BOR FLO -0.21 0.074 (-0.43, 0.02) 0.71 0.67 0.03 0.712
CON -0.09 0.669 (-0.53, 0.34) 0.07 0.07 -0.02 0.317
FRU 0.54 0.038 (0.03, 1.04) 0.04 0.06 0.01 0.459
BOR – – – – – – –
NA 0.23 0.100 (-0.04, 0.50) 0.18 0.21 -0.01 0.766

NA FLO -0.15 0.111 (-0.33, 0.03) 0.76 0.73 -0.04 0.694
CON 0.34 0.016 (0.06, 0.62) 0.07 0.10 0.00 0.767
FRU 0.15 0.482 (-0.27, 0.58) 0.04 0.05 -0.00 0.989
BOR 0.04 0.765 (-0.21, 0.29) 0.12 0.12 0.00 0.885
NA – – – – – – –
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bias inherent in other transition metrics. Additionally, informed by our simulations pertaining
to the problem of multiple comparisons, we applied the BH procedure with a threshold value
of q = 0.1 when analyzing the student data sets. While we believe that, in many cases, this
is a reasonable threshold value, it should be mentioned that the specific choice of value could
very much depend on the nature of the analysis. For example, if the research is exploratory in
nature, with the goal being to identify transition pairs that might be worth further study, higher
threshold values such as 0.15 or 0.2 might be appropriate.

Additionally, we encourage researchers who are analyzing transitions in sequential data to
think critically about the aims of their study and not to consider the “statistical significance”
results as a final outcome. Specifically, in our analyses in Section 5 we have included other
results from the marginal model procedure, such as confidence intervals and the state transition
probability estimates. In fact, we believe the probability estimates are one of the strengths of
this approach. To illustrate this point, consider the results from the Physics Playground data set
in Table 6 where, after applying the BH procedure, 20 of the 25 transition pairs are considered
statistically significant—such a result is arguably of somewhat limited value, as it is not im-
mediately clear which of these 20 transitions are most important. However, by comparing the
probability estimates for each of these transition pairs when x = 0 and x = 1, we can see that
the practical significance of the pairs varies greatly. For example, the estimated probability of
a transition from BOR to FLO is 0.44; however, starting in any state other than BOR the esti-
mated probability is 0.74, a substantial increase. Compare this with the probability estimate for
transitions from BOR to CON, which is 0.06, and which then decreases to 0.02 when starting
in any state other than BOR. While this difference is considered statistically significant, from a
practical standpoint it seems less important and useful in comparison to the large difference that
occurs with transitions from BOR to FLO.

We note that the approach outlined here is flexible, as it can be applied to estimate and mea-
sure the effects of other relationships beyond a single transition between states. As an example,
suppose we are interested in whether starting in state A has an influence on the appearance of
the sequence BAB as the next three states. In this case, we simply need to change our response
variable to fit the situation. Rather than defining the response variable based on the next state,
we simply change the definition so that it has a value of one if the next three states are BAB,
and a value of zero otherwise.

Lastly, one possible criticism of the marginal model procedure is that it requires many dif-
ferent models to be fit to the data; specifically, a separate model is fit for each pair of transitions.
Thus, rather than looking at the starting states individually, a potential improvement would be
to instead directly compare the starting states. In this case, and assuming we do not want to
remove the influence of self-transitions, we can use different indicator variables for the starting
states, and then compare the coefficients of these indicator variables to get a relative ordering
of the importance of the different starting states. Note, however, there are complications with
this last approach when the researcher would like to remove the influence of self-transitions, as
the procedure outlined in Section 3.1 is not directly applicable. Thus, we are currently looking
into this situation in more detail, with the goal of adapting and extending the work from Sec-
tion 3.1. If such an approach proves to be viable, this would allow us to compare the relative
importance of the different startings states within one model, while also removing the influence
of self-transitions.
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