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Abstract

The ALEKS (Assessment and LEarning in Knowledge Spaces) educational software system is an instantiation

of knowledge space theory (KST) that has been used by millions of students in mathematics, chemistry,

statistics and accounting. The software employs a probabilistic assessment based on KST for placement into

an appropriate course or curriculum, a learning mode in which students are guided through course material

according to a knowledge structure, and regularly spaced re-assessments which are also based on KST. In

each of these aspects, the interactions of the student with the system are guided by the theory and by insights

learned from student data. We present several relationships between theory and data for the ALEKS system.

We begin by surveying the ALEKS system and examining some practical aspects of implementing KST on

a large scale. We then study the effectiveness of the ALEKS assessment using both standard statistical

measures and ones adapted to the KST context. Finally, we examine the learning process in ALEKS via

statistics for the learning mode and its associated knowledge structures.

Keywords: knowledge space theory, adaptive assessment, intelligent tutoring system, layers of a knowledge

state

1. Introduction

Knowledge space theory (KST) is an approach to the assessment of knowledge that is based on a combi-

natoric and probabilistic model introduced by Doignon and Falmagne (1985). KST has inspired a large liter-

ature which includes hundreds of peer-reviewed journal articles and several books; a bibliographic database is

maintained by Hockemeyer (2020) at the University of Graz in Austria. ALEKS, which stands for Assessment

and LEarning in Knowledge Spaces, is a web-based intelligent tutoring system based on KST that is de-

signed to assess and instruct students in mathematics, chemistry, statistics and accounting. ALEKS has

been available commercially since the late 1990s, and currently, about four to five million students use it

each year. During the two-decade existence of ALEKS, a great deal of data from student interactions with

the system have been collected. These data offer insights into this large-scale implementation of KST; the

goal of this paper is to examine the principal aspects of ALEKS in light of these data.

A number of studies have been done that scrutinize the relationship between the use of ALEKS and

measures external to ALEKS, such as success in a course or performance on a standardized test. Among
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these studies, one finds Hagerty et al. (2010); Mojarad et al. (2018) for college mathematics, Baxter and

Thibodeau (2011) for accounting, Hickey et al. (2020) for college chemistry, Hu et al. (2007) for college

statistics, Huang et al. (2016); Craig et al. (2013, 2011) for middle school mathematics, and Reddy and

Harper (2013) for college course placement; see also Fang et al. (2019) for a meta-analysis. The present

paper differs from these studies in that it focuses on measures internal to the ALEKS system, such as the

system’s success in predicting a student’s performance on a particular ALEKS question or her readiness to

learn new ALEKS content. Such a focus is meant to provide a pointed analysis of the workings of KST as

implemented in ALEKS.

The paper is organized as follows. In the remainder of this section, we give background on both KST

and ALEKS, including the relationship between KST and assessment and learning in ALEKS. In Section 2,

we first examine the effectiveness of the ALEKS assessment using standard statistical measures. Later in

the section, we again examine the ALEKS assessment, but this time using measures more firmly rooted in

KST, namely, measures derived from the ‘layers’ of a knowledge state. In Section 3 we focus on the learning

aspect of the ALEKS system, first surveying how efficiently students learn new material, and then analyzing

the retention and forgetting of learned material, again featuring the notion of knowledge state layers in the

latter case. Section 4 has a short recapitulation.

1.1. Background on knowledge space theory

At the core of KST is the concept of an item; for the context of ALEKS described in this paper, an item

is a discrete concept or granular topic appearing as part of an academic course. For example, an item for

an introductory high school algebra course might be “Solving a compound linear inequality”, and another

might be “Solving a word problem with two unknowns using a linear equation”. An item is actually a

collection of examples, called instances, each focused on the same, narrow topic, and designed to be equal in

difficulty. One instance of the item “Solving a compound linear inequality” might be “Solve the compound

inequality 4x+ 5 ≤ 21 and 2x+ 5 > 3,” while another instance might be “Solve the compound inequality

4x−5 > −5 or 3x+2 ≤ −13.” Each time the student is presented a given item, whether in an instructional

setting or in an assessment, a different instance is chosen.

There are several hundred items that make up a typical academic course, and having the knowledge and

skill to successfully complete all of the items means (according to KST) mastery of the course. A knowledge

state, or simply state, is a particular set of items that some student could be capable of completing correctly.

Denoting the set of all items by Q, a pair (Q,K) is a knowledge structure if K is a family of subsets of Q

containing all the knowledge states that are feasible, that is, that could characterize some student in the

population. In other words, a student whose knowledge state is K can, in principle, correctly complete all

the items in K and would fail to correctly complete any item not in K. (We say “in principle” because, for

example, there is the possibility of careless errors, also called slips.) The family K always includes the empty
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set (characterizing a student in the state of complete ignorance) and the set Q (characterizing a student

mastering all of the items).

Typically in KST, including in ALEKS, the number of states in the knowledge structure is much less

than the number of subsets of Q. This is due in part to the inherent relatedness of items, as some items

are prerequisites of other items. For example, it would be very unlikely, or even impossible, for a student to

have mastered “Solving a compound linear inequality” without having mastered “Solving a one-step linear

equation.” For one particular ALEKS course (College Placement, described in this section below) comprised

of 314 items, the number |K| of states in the knowledge structure is about 1023, which is considerably

smaller than 2314 ≈ 1094, the number of subsets of a set with 314 elements. The construction of the

knowledge structure will not be described here; see instead, e.g., Desmarais et al. (1995); Desmarais and Pu

(2005); Koppen and Doignon (1990) and Chapters 15 and 16 in Falmagne and Doignon (2011).

Additional KST concepts that are important for the ALEKS system are the ‘outer fringe’ and the ‘inner

fringe’ of a knowledge state. The outer fringe of a state K is the set of items q not in K such that K ∪ {q}

is also a knowledge state. The outer fringe of a student’s state may be thought of as the set of items the

student is ‘ready to learn.’ The inner fringe of a state K is the set of items q in K such that K \ {q} is

also a knowledge state. That is, the inner fringe is made up of the items representing the ‘high points’ of

the student’s competence. If the knowledge structure is a learning space (see Definition A.1 in Appendix),

as is the case in ALEKS, the knowledge state of a student is completely determined by the inner fringe and

the outer fringe of the state (Theorem A.2). The fringes are put to use in the functioning of ALEKS, as

described below.

The next section gives a brief overview of the ALEKS system. It is followed by a discussion of the

implementation of KST in the ALEKS learning and assessment features. As in any other software platform,

there are ongoing improvements made in ALEKS. Our aim is not to cover all the specifics of the current

iteration of ALEKS, but rather to highlight certain processes and to describe the handling of some practical

challenges that arise in such a large-scale implementation of KST.

1.2. A quick overview of the ALEKS system

A student begins her experience with ALEKS by enrolling in an ALEKS course. There are ALEKS

mathematics courses ranging from third grade mathematics to college precalculus, and there are introductory

college chemistry, statistics, and accounting courses. The full list of ALEKS courses and their sets of items

are available at McGraw Hill (2020). When an instructor sets up an ALEKS course to be taken by a class of

students, she has the option of selecting which items, among all the items available in the domain associated

with the course, will make up the actual course content. Typically, an actual course consists of about 300

to 600 items.
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Once enrolled, the student takes an initial assessment in ALEKS. The assessment aims to determine the

student’s knowledge state at the onset of the course. From the state resulting from the initial assessment,

the student’s outer fringe is determined and serves as the student’s entry point in the ALEKS learning mode.

The student chooses an item from her outer fringe and practices instances of the item. She is given feedback

and access to explanations for those instances. If she performs well enough on those instances, ALEKS

temporarily considers the item to be learned. The item is added to the student’s state, the outer fringe is

re-computed, and the student chooses another outer fringe item to practice.

Once the student has practiced a certain number of items, or once she has worked in the learning mode

for a certain amount of time since her previous assessment, ALEKS gives her a progress assessment to

confirm her learning. Based on this assessment, ALEKS updates the student’s state. The student is again

placed in the learning mode, and the process repeats—there is a cycle of learning and assessment until

the student has worked through the course, at which time she may take a final assessment. The cycle of

learning and assessment associated with the progress assessment acts as a form of retrieval practice (also

known as testing effect or test-enhanced learning (Roediger III and Butler, 2011)). Numerous studies have

shown that being forced to actively recall information helps to solidify that information in long-term memory

(Bae et al., 2019; Rawson and Dunlosky, 2011; Roediger III and Butler, 2011; Roediger III and Karpicke,

2006a,b). Another benefit of the progress assessment is that, as it moves from one item to another outside

the student’s control, it enforces interleaved practice on items that were previously learned mostly through

massed practice (see Dunlosky et al. (2013) for the benefit of interleaved practice over massed practice).

These benefits make the interplay between assessment and learning a core feature of the ALEKS system.

Four ALEKS courses are highlighted in this paper. They have been selected as representative of the

mathematics curriculum covered by ALEKS and for the abundance of data they provide. One of the courses

is Sixth-Grade Math, which is either the last mathematics course taken in elementary school or the first

mathematics course taken in middle school; as such, it is taken by students roughly ages 11-12. Another

course is Algebra I, which is usually taught in ninth grade, and so is taken by students ages 14-15. A third

course is College Algebra, which is a higher education course that is often a graduation requirement for

students not in science or engineering majors, unless their high school credentials exempt them from it. We

will call these three courses—Sixth-Grade Math, Algebra I, and College Algebra—learning courses because

students taking them are not expected to have much knowledge of the course material upon starting the

course, and the focus is on helping students learn new material. This is in contrast to the last course we

highlight, College Placement, which is a placement test for incoming college students. It recommends the

highest mathematics course that the student is likely to be successful in, from Basic Math (an arithmetic

course) to first-year Calculus. If a student is not satisfied with her placement recommendation, she has the

option to retake the test, but not before filling her gaps by practicing on a specific course also recommended
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by the test. Another particularity of College Placement is that its item content is not customizable by the

instructor.

Table 1 reports a few usage statistics for the four courses. The data are for students who took their initial

assessment over the period from August 15 to September 30, 2018, for the three learning courses, and over

the period from March to September, that same year, for College Placement. The data report the students’

activity over the length of the course, which is a full academic year for Sixth-Grade Math and Algebra I, and

a semester or an academic quarter for College Algebra. For College Placement, a retake of the test, when it

occurs, happens typically within one or two weeks of the original test.

Table 1: Usage statistics for four ALEKS courses. The numbers are averages per student, with standard deviations

in parentheses. These statistics cover several months in 2018-19 (as described in the text).

Course N
Number of items Number Number Total time

in actual course of assessments of items learned in hours

Sixth-Grade Math 99,482 385.3 (68.1) 4.9 (3.6) 128.2 (110.8) 15.6 (14.8)

Algebra I 63,097 523.1 (172.0) 4.1 (3.6) 104.3 (112.9) 13.7 (16.9)

College Algebra 19,131 301.5 (123.7) 5.0 (4.0) 145.2 (113.6) 31.4 (27.1)

College Placement 548,391 314.0 (0.0) 1.3 (0.7) - 2.1 (1.7)

1.3. Knowledge space theory as implemented in ALEKS

The above is only a brief overview of the ALEKS experience, with many details left out. What follows are

discussions of some specifics of the ALEKS assesssment and learning mode, with a few practical challenges

highlighted and their solutions outlined.

At the heart of any ALEKS course is the knowledge structure. As mentioned earlier, we will not cover

here the construction of the knowledge structure, but we simply note that everywhere in the following, when

we mention the knowledge structure (and by extension its knowledge states and operations on them), we

actually mean the projection (Definition A.3 and Theorem A.4) of the knowledge structure on the subset of

items chosen by the instructor for the course.

An ALEKS assessment can be viewed as a probabilistic search among all of the feasible states to uncover

the student’s latent state. Such an algorithm starts with some initial probability distribution on the states

(Definition A.6). Then an item that roughly splits the distribution into two equal parts is selected. This

item is such that the probabilities of the states that contain it add to about 0.5, and we say that the item has

a likelihood close to 0.5. After each response from the student, the probabilities of the states are updated

based on the response. For a correct response, the update results in an increase of probability for the

states containing the item and a decrease for the other states. For an incorrect response, the update goes
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in the other direction, with the probabilities of the states not containing the item being increased and the

remainder decreased. For each subsequent question, the algorithm selects an item that has a likelihood close

to 0.5, and the probabilities are updated based on the student’s response. The assessment proceeds until a

single knowledge state emerges with a very high probability1. Section 13.4 of Falmagne and Doignon (2011)

provides a formal description of the principles outlined here.

Such an algorithm assumes that all the states in the knowledge structure can be listed and assigned a

probability to begin the assessment. It also assumes that the probabilities of the states can be updated in a

timely fashion, with the likelihoods of items computed from the states and then used in selecting the most

informative question after each response. However, the sizes of the knowledge structures in ALEKS create

several challenges to these assumptions. For most ALEKS knowledge structures, there are too many states

to list even with modern computing power, and updating the probabilities of the states between questions

is not feasible. To overcome this, the ALEKS system currently employs an assessment algorithm similar to

the one outlined in Section 8.8 of Falmagne et al. (2013). In this algorithm, the set of items in the course

is partitioned into several subsets, and the assessment is run in parallel, simultaneously on these subsets.

Each subset gets its knowledge structure via projection from the full knowledge structure, and each of these

knowledge substructures has a size that allows for the listing of its states, and for the probabilities of the

states to be computed. Following the student’s answer to the selected item, the probabilities of the states

for the subset to which the item belongs are updated as described above. A key feature of the algorithm is

its ability to carry the information gained from the student’s answer to the other subsets (to which the item

does not belong) and to update the probabilities for the states in these subsets.

One optimization used by the assessment is to perform its search on a subset of the knowledge structure

that is relevant to that particular assessment. For example, initial assessments are taken by students who

may have mastered the prerequisite material for the course (some of which is typically part of the domain of

knowledge for that course) but not necessarily much more. The initial assessment thus performs the search

on a smaller but very representative set of knowledge states that reflects this information. On the other

hand, the focus of progress assessments is quite different. They are not designed for placement from scratch

but mostly for testing the recent learning progress of the student. Consequently the progress assessment

runs a local search, essentially in the neighborhood (Definition A.5) of the knowledge states recently crossed

by the student. For both types of assessments, the probability distribution on the knowledge states at the

onset of the assessment is not uniform but is instead informed by past assessment data from the course.

1Note that, because of the probabilistic nature of the assessment procedure, this final state may contain an item to which

the student gave an incorrect response. Such a response is regarded as due to a careless error. ALEKS items typically have

open-ended answers, in the sense that the system avoids multiple choice formats and instead uses answer input tools that mimic

what would be done with paper and pencil. As such, the lucky guess probability may be assumed to be very small.
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Even the most efficient assessment algorithm needs to ask more questions than practical to converge

to a single state, especially in the case of the initial assessment. For the College Placement course, the

knowledge structure contains about 1023 ≈ 277 states. If all states were equally likely at the beginning of

the assessment, an algorithm that could eliminate half of the remaining states after each question would still

require 77 questions in the worst case to converge to a single state. It is not practical to ask a student this

many questions in an assessment. Based on the feedback from students and instructors over the years, the

number of questions in an initial assessment has been capped at 30. This number strikes a balance between

the need to gather enough information about the student’s knowledge state and the risk of overwhelming

the student with too many questions.2 All assessments also ask a randomly selected ‘extra problem’ used

for testing purposes (see Section 2.1 below). So there are actually up to 29 questions in an initial assessment

that are selected adaptively and used for uncovering the student’s state.

In the ideal case, an assessment concludes once all the items can be categorized as either likely to have

been mastered by the student (‘in-state’) or likely not to have been mastered by the student (‘out-of-state’).

Typically, an item falls in the former category if its likelihood is above 80% and the latter category if its

likelihood is less than 20%. Most often, however, the assessment ends because it reached the maximum

number of questions. While most items will then have a likelihood very close to either 1 or 0, the items

not yet categorized as in-state or out-of-state will be categorized as ‘uncertain’. The state assigned to the

student at the end of the assessment does not include these uncertain items and so may underestimate the

student’s latent state. After the initial assessment, the learning of such uncertain items is fast-tracked (see

below) and allows the new student to begin the learning process with easier material. As learning progresses,

the initial underestimation quickly disappears.

Another distinction relevant to our discussion concerns the updating rule of the assessment. After an

incorrect response, the probabilities of the states that do not contain the item are increased, while the

probabilities of the remaining states are decreased. However, this update cannot be very aggressive given

that there is a non-negligible chance for a careless error. This fact motivated the addition for each question

of a button labeled “I don’t know” (or “I haven’t learned it yet”), which the student can choose if

she has no familiarity with the item. Selecting the button results in a substantial increase in the probabilities

of the states not containing the item, thereby decreasing the total number of questions required to uncover

the student’s state. On the other hand, the open-ended nature of an ALEKS question makes lucky guesses

very unlikely. So the update following a correct answer is also substantial3.

2Regarding the latter concern, see Matayoshi et al. (2018) for evidence of a ‘fatigue effect’ experienced by students in ALEKS

assessments.
3See Definition 13.4.4 in Falmagne and Doignon (2011) for a formal description of the updating rule. Remark 13.4.5 discusses

a Bayesian interpretation of the update parameters of the rule that links them to the lucky guess and careless error rates of the

items. In agreement with overall empirical estimates of these error rates, the update parameters in ALEKS are about 35 for a
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We conclude this section with some specifics about what constitutes the learning of an item in the

student’s outer fringe. In the ALEKS learning mode, the student has access to a graphical list that presents

all the items in the student’s outer fringe and from which the student can select any item. Each item in the

list comes with a ‘learning progress bar’ and a numerical value, or ‘score’, summarizing it. The initial score of

an item is 0. When the student selects a new item to work on, an instance of that item with its explanation

is presented. After reading the explanation, the student receives another instance for actual practice. Each

time the student receives a new instance, she can either try to answer it or read the explanation for that

instance. Afterward, the student gets another instance to practice, and so on. As the student practices the

item, its score is updated according to the following rules.

� A correct answer increases the score by 1, but the second correct answer on a streak of two consecutive

correct answers increases the score by 2 (for a total of 3).

� An incorrect answer decreases the score by 1, unless the score was already at 0.

� Reading an explanation does not change the score. However, reading the explanation when the new

instance follows a correct answer breaks the streak of correct answers. So there is an implicit encour-

agement to try to answer without falling back on the explanation.

An item is considered to be (provisionally) learned, and is added to the student’s knowledge state, when

the student reaches a preset target score. Most often an item requires a target score of 5 to be learned. There

are two cases when a target score of 3 is enough and the learning is fast-tracked. The first case is when the

item is classified as uncertain following the initial assessment. The other case is when the item has been

learned previously but then removed from the student’s knowledge state following a progress assessment.

Five consecutive incorrect answers is considered a failed learning attempt. In that case, the student is gently

prompted to try another item.

2. Evaluating the ALEKS assessment

In this section we give a detailed evaluation of the ALEKS initial assessment. We choose the initial

assessment because it is the most challenging type of assessment for the system, as ALEKS has little to

no information about the student to begin. Though the initial assessment for each ALEKS course runs via

the algorithm described in Section 1.3 above, the student’s experience in taking an initial assessment will

vary based on the level of the student, the set of items in the particular course, the knowledge structure

in place for those items, and other factors. With this in mind, we examine here the initial assessment for

correct answer, 5 for an incorrect answer, and 50 for “I don’t know”, with some variation from one course to another.
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three courses that differ in a number of such factors. The three courses, which are introduced in Section

1.2, are Sixth-Grade Math (which covers mostly basic arithmetic and geometry), College Algebra (which

covers exponentials and logarithms, matrices, and polynomial and rational functions), and College Placement

(which covers areas such as proportions and percentages, integer arithmetic, linear and quadratic functions,

polynomial and rational functions, exponentials and logarithms, and trigonometry). We note that College

Placement has the most student use of any ALEKS course, involves the greatest diversity of student ability,

and has an average initial assessment result nearest the “middle” of the course. For these reasons, the College

Placement initial assessment is an especially useful and important one to study, and it is examined further

in Section 2.3 below.

In the analyses that follow in Sections 2.2 and 2.3, data from over 3.1 million initial assessments gath-

ered from 2012 until early 2020 were used. Detailed demographic information about the students, such as

information regarding gender, age, geographic location, or college major, is not available. However, these

ALEKS courses are taken predominantly by students in the United States, and there is roughly one student

represented per initial assessment taken. (Some students in the College Placement sample took more than

one initial assessment.) For the College Placement sample, each of the students was enrolled or soon-to-be

enrolled at a college or university and took the assessment for the purpose of being placed in an appropriate

mathematics course.

2.1. A key statistic: the extra problem in assessment

In each ALEKS assessment, one item is chosen uniformly at random from the set of items being used in

the course, and the item is presented to the student as an assessment question. For the student, nothing

distinguishes that extra problem from the other problems in the assessment. The answer to the extra

problem is ignored by the adaptive assessment and does not affect its results. Rather, the extra problem and

its answer are stored separately and later used to evaluate and improve the ALEKS system. Throughout

this section and the next one, we will resort extensively to statistics built upon the extra problem to evaluate

miscellaneous aspects of the ALEKS system.

2.2. Evaluating the assessment using standard measures

Section 2.2 treats an ALEKS assessment as a probabilistic classifier that attempts to predict, for each

item, whether or not the item is contained in the student’s knowledge state. Thus, for the most part, rather

than looking at aspects of the assessment specific to KST, our intent is to evaluate the performance of the

assessment using standard measures that can be applied to any model that makes probabilistic classifications.

To perform this evaluation, we use the following procedure. At all times during an assessment, the ALEKS

system has, for each item, an estimated probability that the item is contained in the student’s state. To

evaluate these estimates, we can compare the probabilities with the student responses to the extra problems;
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in what follows, we encode these responses as either “1” (for a correct answer) or “0” (for an incorrect

answer or an “I don’t know” response). It is worth noting that each probability estimate from the ALEKS

system corresponds to the likelihood that the student knows an item, rather than being an estimate of

the probability that the student answers the item correctly. However, without access to the student’s true

knowledge state, we use the actual responses as a reasonable proxy to evaluate the probability estimates.

For the initial assessment for each of the three courses, we use the probability estimates returned at

the end of the assessment to evaluate the following measures: the area under the receiver operating charac-

teristic curve (AUROC), the point biserial correlation, and the accuracy. The AUROC is commonly used

in evaluating probabilistic classifiers, and one of its strengths is that it is not sensitive to class imbalances

(Fawcett, 2006). The point biserial correlation is a special case of the Pearson correlation coefficient in

which one variable is dichotomous (i.e., the student response) and the other variable is continuous (i.e., the

probability estimate from the ALEKS system). The AUROC and point biserial correlation use the exact

probability scores. For the accuracy computation, any probability at or above 0.5 is assigned to the positive

class (a correct answer) and anything below 0.5 is assigned to the negative class (an incorrect answer or an “I

don’t know” response); note that this assignment of classes is a standard procedure used to evaluate binary

classifiers which does not necessarily correspond to the actual classifications by the ALEKS assessment. (We

analyze the actual classifications of the assessment in more detail shortly.)4

The results are shown in Table 2, where extra problem correct rate, or simply correct rate, refers to the

proportion of all responses to the extra problem that are graded as correct by the ALEKS system. We see

that the strongest overall results are from the College Placement assessment. This fact is not unexpected,

as College Placement is a specialized assessment that has the sole purpose of placing a student into the

appropriate college-level mathematics course; as such, the items used in the course are chosen for being

quality assessment questions. On the other hand, for the College Algebra and Sixth-Grade Math courses,

which are learning courses, the emphasis is on fully covering the subject matter so that students can have a

complete learning experience. Because of this, the items in these latter courses are designed to be used for

both assessment and learning purposes; a natural consequence of this split focus is that the overall assessment

performance of the items, while still acceptable, is not quite as strong as in the College Placement assessment.

Next, in Table 3 we have partitioned the data points based on the actual classification made by the

assessment (either in-state, out-of-state, or uncertain), for all three of our example ALEKS courses. For

4We also evaluated the performance of the assessment using the Matthews correlation coefficient (Matthews, 1975), which is

recommended as a good overall measure for evaluating binary classifiers (Boughorbel et al., 2017; Chicco, 2017; Powers, 2011).

However, as the results were very similar to those obtained from the use of the point biserial correlation, we have omitted the

Matthews correlation from our analysis. This similarity is perhaps not too surprising, as the Matthews correlation is another

special case of the Pearson correlation coefficient.
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Table 2: Statistics for ALEKS initial assessments

Course N Correct rate AUROC Point biserial Accuracy

Sixth-Grade Math 162,900 0.392 0.875 0.634 0.801

College Algebra 174,073 0.322 0.863 0.602 0.808

College Placement 2,775,432 0.509 0.889 0.671 0.814

Table 3: Statistics for ALEKS initial assessments, partitioned by item classification

Course
In-state Out-of-state Uncertain

Proportion
Correct

rate
Proportion

Correct

rate
Proportion

Correct

rate

Sixth-Grade Math 0.333 0.794 0.497 0.110 0.170 0.428

College Algebra 0.283 0.740 0.610 0.110 0.107 0.427

College Placement 0.474 0.838 0.358 0.102 0.168 0.449

each classification category, Table 3 includes the proportion of items in the category, as well as the extra

problem correct rate for those items. Again, we can see that College Placement has the best performance;

for the in-state items, it has the highest correct rate (if an item is classified as in-state, it is desirable that

the correct rate be high), while it then has the lowest correct rate for the out-of-state items (if an item is

classified as out-of-state, one would expect it not to be answered correctly very often). Note that for the

three courses, the correct rates for the uncertain items range between 0.42 and 0.45; assuming that there is

some amount of careless error in these responses, it seems plausible that the proportion of these uncertain

items actually known by students is somewhere around 0.5, which is the desired value. If, instead, the

proportion of uncertain items actually known by students were very high or very low, this would be a sign

that the classifications made by the ALEKS assessment are not well-calibrated.

For our next two analyses, we focus on College Placement which, for the reasons outlined in the in-

troduction to Section 2, is a natural choice for an in-depth analysis. First, Figure 1 shows the evolution

of the AUROC, point biserial, and accuracy values over the course of the assessment. Specifically, for the

2,688,472 College Placement assessments in the dataset that run for the full 29 questions, the values of the

three measures are plotted at each point in the assessment (i.e., after each question). As shown, the values

converge early in the assessment, with the changes being minimal after question 10. Essentially, this means

that the assessment quickly obtains a fairly accurate picture of the student’s knowledge, and then uses the

remaining questions to fine-tune this picture.

We next look at the performance of the College Placement assessment at the level of the individual

11



0 5 10 15 20 25 30
Question number

0.0

0.2

0.4

0.6

0.8

1.0

AUROC
Point biserial
Accuracy

Figure 1: Classifier measure values by assessment question number.

items. With its fixed set of 314 items from which the extra problems are chosen uniformly at random, the

College Placement dataset has on average nearly 9000 data points per item.5 For each item, the value of the

measure (AUROC, point biserial correlation, or accuracy) may be compared to the correct rate for the item.

Figures 2a–2c show the results for the AUROC, point biserial correlation, and accuracy, respectively. For

the AUROC and point biserial correlation, the student’s response to the extra problem is being compared

directly to the probability returned by the ALEKS system, while for the accuracy, this probability is rounded

to the nearest integer (either zero or one).

We begin by looking at the AUROC measure in Figure 2a. The items have a wide range of correct rates,

so the AUROC is recommended since, as mentioned previously, it is not sensitive to class imbalances. This

is supported by the fact that the trend of the AUROC values is mostly flat and does not have a significant

dependence on the correct rate. The values seem to degrade only for the items with the highest correct

rates; since, again, the AUROC is not sensitive to class imbalances, this appears to be strong evidence that

the performance of the assessment degrades when making predictions on the easiest items.

5This is in sharp contrast to ALEKS courses such as Sixth-Grade Math and College Algebra, for which the set of items

appearing as extra problems is not fixed, as instructors are free to choose the items that appear in these courses. This results in

a large proportion of items appearing rarely, or not at all, as extra problems, causing complications for an item-level analysis.
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Figure 2: AUROC, point biserial correlation, and accuracy versus extra problem correct rate.
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Next, we turn to the point biserial correlation in Figure 2b. In contrast to the AUROC measure, the

point biserial correlation has been shown to depend on the base rate of the dichotomous variable (Cohen,

1983; McGrath and Meyer, 2006). In our case, the base rate of the dichotomous variable corresponds to

the extra problem correct rate. This dependence appears in the form of a pronounced curve in Figure 2b,

where the point biserial correlations for the easiest and hardest items are lowest; the highest point biserial

correlations then appear for the items in the middle range of difficulty. One final observation is that, while

the point biserial correlations are low for the hardest items, the values for the easiest items appear to be

even lower; this is consistent with the behavior of the AUROC measure, for which the lowest values also

appeared for the easiest items.

Lastly, the plot for accuracy is displayed in Figure 2c. As the issues with accuracy values computed

on imbalanced data are well known (Provost and Fawcett, 1997; Provost et al., 1998), unsurprisingly the

accuracy plot also shows a pronounced curve, albeit in the opposite direction of the curve for the point

biserial correlation. That is, the accuracy values are highest when the class imbalance is highest (i.e., for the

easiest and hardest items) and lowest when the data are more balanced (i.e., for the middle difficulty items).

Based on the above analysis, there appears to be evidence that the performance of the ALEKS assessment

degrades for the easiest items, that is, the items with the highest extra problem correct rates. A possible

explanation for this is the following. In ALEKS, careless errors are much more common than lucky guesses;

this is due to the fact that the majority of ALEKS items require an open-ended response, while relatively

few require only multiple choice or true/false responses. Because of this, very difficult items have relatively

little noise, since most students do not know how to solve them and are likely to give a wrong answer (again,

since lucky guesses are rare). On the other hand, many students know the easy items but may make careless

errors when solving them. When one considers this, along with the fact that discriminating students who

know from those who do not know these easy items is difficult (simply because most students do in fact

know these items), it is perhaps not surprising that the predictive performance of the assessment degrades

for the easiest items.

2.3. Evaluating the assessment using knowledge state layers

We now look at how the extra problem rate is affected by the position of the item relative to the knowledge

state. To do this, we employ the concept of the layers of a knowledge state. Following Doble et al. (2019),

we define the layers of a knowledge state via the surmise relation.

Definition 2.1. Let (Q,K) be a knowledge structure. For any item q ∈ Q, let Kq denote the family

{K ∈ K | q ∈ K}. The surmise relation - is a relation on Q defined by

q - r ⇐⇒ Kq ⊇ Kr. (2.1)

We can now define the layers of a knowledge state.
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Definition 2.2. Let (Q,K) be a learning space. As such, it is known that the surmise relation is a partial

order (that is, reflexive, antisymmetric, and transitive). We define the outer layer Sol of a subset S of Q as

Sol = {q 6∈ S | ∀r 6∈ S, r - q ⇒ r = q}.

The outer layer of S is thus the set of the minimal items with respect to the restriction of - to Q \ S.

Similarly, we define the inner layer Sil of a subset S of Q as

Sil = {q ∈ S | ∀r ∈ S, q - r ⇒ r = q}.

The inner layer of S is thus the set of the maximal items with respect to the restriction of - to S. We define

recursively the nth outer layer Koln of a state K as

Kol1 = Kol,

Koln = (K ∪
n−1⋃
i=1

Koli)ol if n ≥ 2.

Similarly, we define the nth inner layer Kiln of K as

Kil1 = Kil,

Kiln = (K \
n−1⋃
i=1

Kili)il if n ≥ 2.

It follows immediately from the definition of outer layer that, for any state K and any item q 6∈ K, there is

a natural number n such that q ∈ Koln . Moreover, the outer layers of K are order-preserving with respect

to the surmise relation: for all q, r 6∈ K, with q ∈ Koli and r ∈ Kolj ,

q - r ⇒ i ≤ j.

Similarly, the inner layers of K are order-reversing with respect to the surmise relation: for all q, r ∈ K,

with q ∈ Kili and r ∈ Kilj ,

q - r ⇒ i ≥ j.

The notion of layer exposed here has similarity with but is distinct from the notion of nth-fringe introduced

in Hockemeyer (1997). Additionally, in Appendix A of Cardinal et al. (2013) the “levels” of a partially

ordered set are discussed, and this concept is equivalent to the outer layers of the empty set specifically

when the knowledge space is defined by a partial order. The exact relation between layers and fringes of a

knowledge state is examined in Doble et al. (2019). The layers can be thought of as a partition of the items in

Q based on their difficulty and complexity in relation to a knowledge state K. Empirically, this can be seen

in Figure 3a, which shows the correct rates for the College Placement extra problems as a function of the

knowledge state layer. For this analysis, we exclude any extra problems that were classified in the uncertain
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category at the end of the assessment; this gives a clearer picture of the different behavior of the items

depending on whether or not they are in the student’s knowledge state.6 The correct rate essentially starts

at zero for the outermost layers, and then begins to increase around outer layer 8, eventually arriving at a

value of roughly 0.27 for outer layer 1. There is then a large jump from outer layer 1 to inner layer 1, with

inner layer 1 having a correct rate of roughly 0.7. The correct rate then continues to increase throughout

the rest of the inner layers.

Figure 3b shows the corresponding rates for the “I don’t know” responses (that is, the proportion of

all responses to the extra problem for which the student does not attempt to answer but chooses “I don’t

know”). Note that these rates behave somewhat differently from the correct rates. To start, the “I don’t

know” rates for the outer layers show larger differences compared to the correct rates, with the overall change

being slightly more than 0.4; by comparison, the overall change in the correct rate for the outer layers is

less than 0.3. Then, moving to the inner layers, we see markedly different behavior, as the “I don’t know”

rates are almost constant, showing very little change from the inner fringe onward. This is an interesting

contrast, as it signals that students appear to recognize when they do in fact know how to solve an item.

On the other hand, understanding the behavior in the outer layers is complicated by the fact that College

Placement is a placement exam, and in such a context students may feel pressure to attempt answers, even

if they do not know the content in the item.

In regard to this last concern, Figures 3c and 3d show the corresponding plots for the College Algebra

course. While the correct rates in Figure 3c are roughly similar to the correct rates in Figure 3a, the “I

don’t know” rates in Figure 3d diverge from the corresponding rates in Figure 3b. In particular, the College

Algebra “I don’t know” rates reach a maximum of about 0.8, much higher than for College Placement. This

would seem to support the hypothesis that students taking the College Placement assessment are motivated

to attempt answers, even if items are inaccessible to them, as a higher score may mean placement into a

more advanced course. On the other hand, College Algebra students are already enrolled in the course at the

time of the assessment, and the purpose of the assessment is to ascertain their knowledge of the course (as

opposed to placing them in a different one). The typical College Algebra student will likely have different

motivations from the typical College Placement student when taking the initial assessment, and the “I don’t

know” rates seem to reflect this.

These figures can also be instructive when considering the validity of the item classifications made by

the assessment. Specifically, the drop in the “I don’t know” rate from the outer layers to the inner layers

6In practice, the majority of the uncertain items are in the outer fringe (outer layer 1) of the knowledge state returned by

the assessment. As discussed previously, a large portion of these uncertain items are actually known by the student, with the

assessment simply lacking enough information to make this classification. As such, including the uncertain items in the outer

layers inflates the correct rate, and removing them gives a better estimate of the behavior of the “true” outer layers.
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Figure 3: Extra problem correct rate (left) and “I don’t know” rate (right) by fringe layer for College Placement (top)

and College Algebra (bottom).
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provides evidence that the in-state and out-of-state classifications made by the system are justified. That is,

since students are not aware of these classifications during the assessment, the observed difference in their

behavior when an item is out-of-state (i.e., the outer layers) compared to when it is in-state (i.e., the inner

layers) provides empirical validity for these classifications. Additionally, the overall lack of “I don’t know”

responses for the inner layers seems to indicate that it is relatively rare for a student to truly have no idea

how to solve an in-state item.

We next look at the extra problem correct rates for a few example items of varying difficulty. For context,

Figure 4 displays a histogram of the correct rates for the College Placement items. Figure 5a then shows the

correct rates by layer for an item with an overall correct rate of 0.15; from the histogram, we can see that a

correct rate of 0.15 puts the item on the more difficult side. The difficulty of the item can also be seen in

Figure 5a, where the majority of the data are from the outer layers, with inner layers 1 and 2 being the only

inner layers with any significant amount of data; in other words, the item is most often categorized as being

out of the student’s knowledge state, indicating that it is relatively rare for students to know the item.

Figure 5b shows the layers for an item with a correct rate of 0.47, putting the item somewhere in the

middle range of difficulty; this relative level of difficulty can also be seen in the figure, as the data points are

balanced between the inner and outer layers. In Figure 5c we then have an example of an easier item, whose

correct rate is 0.94. Once again, the difficulty of the item is indicated by the layer information, as the figure

contains data points only for the inner layers.

We conclude this subsection by pointing out the contrast between the correct rates by layer presented

above and the correct rates predicted by the basic local independence model (BLIM) (Definition A.7). Under

the BLIM, the extra problem correct rate for an item q should equal the lucky guess rate ηq for all outer

layers, and it should equal 1 minus the careless error rate, 1 − βq, for all inner layers. Figures 5a–5c show

plots of the extra problem correct rates by layer for three individual items. These plots do not have enough

data points for all layers. Nevertheless, all three plots look different from the 1-step functions predicted by

the BLIM. If the predictions of in-state and out-of-state made by the ALEKS system are accurate, then

these plots may serve as evidence that the lucky guess and careless error parameters vary by the knowledge

state of the student, and therefore are not independent of the student’s knowledge state as assumed for the

BLIM.

Recall Figure 3a, which is the plot of the extra problem correct rates with all items aggregated. It has a

characteristic “S” shape. The “S” shape is also present in similar graphs presented in Doble et al. (2019),

where items are aggregated according to difficulty level. Traces of the “S” shape are also found in Figures 5a–

5c. These plots suggest that a way of modeling the correct rates using information from the knowledge state

(via the layers) is by using generalized sigmoid curves, also known as Richards curves (Richards, 1959; Lei

and Zhang, 2004). These curves would require 3 to 5 parameters per curve, and they would not cause an
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Figure 4: Relative frequency histogram of the extra problem correct rate for College Placement.

explosion in the number of parameters (a concern raised in Remark 11.1.3 in Falmagne and Doignon (2011)).

On the other hand, the in-state and out-of-state classifications by the ALEKS system almost certainly

are made in the presence of inaccuracies in the knowledge structure and noise in student responses. Some

of the evidence against the BLIM in these plots can be attributed to these factors. We did not attempt to

mitigate these factors with an eye toward testing the BLIM in the current work, and more careful study is

necessary.

3. Evaluating the ALEKS learning mode

To complement the analysis of the ALEKS assessment given in Section 2, we now examine the other

principal aspect of the ALEKS system: the learning mode. As described in Section 1.2, once a student

finishes the initial assessment, she is placed into the learning mode, during which she practices items in the

outer fringe of her knowledge state. After a certain amount of time or items practiced, she is given a progress

assessment to verify her learning, and after the assessment the learning mode resumes.

3.1. Learning an item from the student’s outer fringe

We outlined in Section 1.2 the scoring system that measures a student’s progress while she practices an

item from her outer fringe. At the time the ALEKS system prompts the student to take a new assessment,
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Figure 5: Extra problem correct rate by fringe layer for a high, medium, and low difficulty item, respectively.
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each item that the student attempted to learn since the previous assessment can be classified in one of

four categories: (i) the item was considered provisionally learned (‘success’) and was added to the student’s

knowledge state; (ii) the learning attempt was considered unsuccessful (‘failure’) and the student was invited

to try another item; (iii) the student practiced the item, but ALEKS had not determined it yet a success or a

failure (‘incomplete’); and (iv) the student selected the item, but left it immediately after seeing the example

explanation and never returned to practice it (‘no activity’). This last category is counted as distinct from

the ‘incomplete’ category.

Table 4 reports the proportion of each category for the three ALEKS learning courses under study: Sixth-

Grade Math, Algebra I, and College Algebra. The data come from the usage of these three courses over the

years 2016 − 2019. In this table, all learning activity for an item between two consecutive assessments (or

between the last assessment and the time all course activity ends) is represented by a single data point. If an

item is re-attempted following an assessment, it will generate a second data point. At any time, the student

may decide to suspend (or abandon) practicing an item by picking up another item available from the outer

fringe. If the student revisits a previously suspended item before a new assessment takes place, the scoring

for the item is resumed from when the student left the item. How often the practicing of an item happened

without such a revisit is reported in parentheses for each category in Table 4. As the assessment may add

or subtract items relative to the student’s knowledge state before the assessment, the item scores are reset

for all items following the assessment.

Table 4: Relative frequency of the classification of the learning attempts for each course. In parentheses is the

proportion of the attempts in the category that did not involve a suspension with revisit.

Product N Success Failure Incomplete No activity

Sixth-Grade Math 38,928,733 0.809 (0.845) 0.041 (0.516) 0.103 (0.701) 0.047 (1.000)

Algebra I 21,769,811 0.841 (0.884) 0.030 (0.578) 0.085 (0.726) 0.044 (1.000)

College Algebra 15,749,089 0.943 (0.927) 0.015 (0.613) 0.032 (0.725) 0.010 (1.000)

In a general sense, the success rate can be seen as measuring the appropriateness of the outer fringes,

and so, indirectly, of the underlying knowledge structures. We observe that the success rate increases with

the grade level of the course (the age of the students), whereas each of the other three categories decrease

with the grade level. On the other hand, assessment results in Tables 2 and 3 do not point to Sixth-Grade

Math as having a less appropriate knowledge structure than College Algebra. It is reasonable to assume

that the results in Table 4 reflect instead behavioral differences between the populations. A large fraction

of College Algebra students are adults who enroll at two-year colleges with the goal of gaining higher-

education credentials to improve their employment prospects. By contrast, Sixth-Grade Math and Algebra I

are compulsory courses taken by minors of varying degrees of maturity and motivation. As the populations
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age and become more self-selected, we observe an increased level of dedication and focus on learning. This

interpretation is also consistent with the greater proportion of uninterrupted learning attempts from Sixth-

Grade Math to College Algebra.

We now take a more detailed view of the Algebra I data from Table 4. Algebra I is chosen for this analysis

as the ‘middle’ of the three courses. There are about 1100 items available to the instructor for inclusion in

the Algebra I course. The most commonly used 500 items have more than 10,000 learning attempts each,

and together account for more than 90% of the data. Figure 6a shows the relative frequency of each category

(success, failure, incomplete, no activity) for these 500 most commonly used items. The items are ordered

on the horizontal axis by increasing rate of success; 92.4% of the items have a success rate of 0.70 or higher,

and the median success rate is 0.863. A small number of items, however, exhibit low success rates, with 14

of them falling below 0.60. There are several factors that may negatively impact the success rate of an item.

One factor is a possible deficiency of the knowledge structure with respect to the item: the item may not

belong in the outer fringe of the knowledge states from which the learning is attempted. Other factors may

come from the item itself. For example, the item’s explanation may need improvement, or there may be

instances that are not representative of the item and are problematic for the student to answer successfully.

Improving the low success rate of an item may require resolving these respective issues.

The data for Algebra I in Table 4 come from about 196,000 students, 77% of whom had at least 20

learning attempts over the length of the course. Figure 6b is similar to the previous figure, but this time

the horizontal axis shows a random sample of 500 students with at least 20 learning attempts. (A sample

was used, rather than the entire data set, for clarity in the figure.) The median student in the sample had a

success rate of 0.865. The figure illustrates not only the differences in performance (that is, in success rate)

among students, but also the differences in behavior. For instance, two students with similar success rates

can differ tremendously in their rates of incomplete versus failure.

3.2. Retention in progress assessments and forgetting curves

We now examine the relationship between the retention of knowledge and the layers of a knowledge state.

Specifically, we look at the famous Ebbinghaus forgetting curves (Averell and Heathcote, 2011; Ebbinghaus,

1885) in relation to different knowledge state layers. Previous work has shown that the retention of knowledge

in ALEKS changes as a function of the time since the item was learned in the learning mode (Matayoshi

et al., 2018, 2019). We define retention as the act of answering an item correctly when it appears as an

extra problem at a point in time after the item is learned. We then say that the retention rate is the correct

answer rate on these extra problems.

Starting from a dataset composed of the complete ALEKS learning and assessment profiles of 6,701,233

students drawn from the entire spectrum of ALEKS courses over the years 2016−2019, we extract 8,352,006

extra problems that fit our definition of retention given in the previous paragraph (i.e., the items were
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Figure 6: Learning categorizations for the 500 most commonly used Algebra I items and for a random sample of 500

Algebra I students, respectively. In each figure, the relative frequencies of the four categories are stacked and add

to 1.

learned in the ALEKS system before appearing as an extra problem in an assessment). For each of these

extra problems we determine which inner layer the item appeared in when the item was encountered as the

extra problem, and then we plot the retention rate for each layer as a function of the time since the item

was learned.

The results are shown in Figure 7, where we can see that the curves are monotonically increasing as a

function of the inner layer. Additionally, there are some interesting differences in the shapes of the forgetting

curves. The first inner layer curve (Layer 1) has a steep drop within the first several days, and then flattens

out at a correct rate of roughly 0.6. The second inner layer curve (Layer 2) has less of an initial decline,

and then stays much higher, ending at about 0.67. In the subsequent inner layer curves this initial decline

continues to lessen, with the final curve (representing inner layers greater than or equal to five) being mostly

flat and ending with a rate of about 0.8. Figures 8 and 9 show the analogous curves for “I don’t know” and

incorrect responses, where we can again see that the response rates are very much dependent on the layer.

Thus, it is clear that the position of an item in the inner layers is strongly related to the retention and

forgetting of that item. This makes sense as, all else being equal, the “deeper” an item gets in the knowledge

state, the more potential there is for the state to contain related material that builds on the item. This

related material would, presumably, have the effect of solidifying the knowledge associated with the item,

resulting in higher retention. (See Matayoshi et al. (2020) for an analysis of how the learning of related

material can act as a type of retrieval practice.)
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Figure 7: Forgetting curves (i.e., correct response curves) conditioned on the inner layer.
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Figure 8: “I don’t know” response curves conditioned on the inner layer.
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Figure 9: Incorrect response curves conditioned on the inner layer.

4. Discussion

As an implementation of knowledge space theory, the ALEKS system had to solve problems of scale not

directly addressed by the theory. One issue is the scale of the domain of knowledge. Comprehensive content

coverage of a typical course requires hundreds of items. Another issue is the scale of usage. ALEKS serves

millions of students yearly. At any given time, tens of thousands of them can be simultaneously engaged

in a knowledge assessment or in the learning of an item. Solving these issues remains an ongoing process.

While this paper leaves out the technical and engineering aspects brought by these challenges, it outlines

some of the solutions as they relate to the theory. There are also features of ALEKS that lie outside the

direct scope of KST. The notion of outer fringe drives which items are accessible to the student for learning,

but what constitutes the actual learning of an item is shaped by evolving heuristics. Similarly, the cycle

of learning and assessment is not intrinsically a KST concept, but is supported by findings from cognitive

psychology (Dunlosky et al., 2013) and the emerging field of learning science (Feldman, 2020). Critically,

however, all design decisions were made as to remain consistent with the formal framework of KST.

The work presented here leverages the large amount of available data to analyze the extent to which

practice conforms to theory. Section 2 evaluates the performance of the ALEKS initial assessment with

respect to several measures, one of which relies on the concept of layers of a knowledge state. The data may
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be viewed as questioning the assumptions of the basic local independence model, a mainstay of the research

in KST. According to the BLIM, the conditional answer to an item given the knowledge state of the student

is only determined by two parameters, the careless error rate and the lucky guess rate of the item, with no

dependence on the knowledge state. The data instead suggest a high sensitivity to the actual knowledge

state. But they also suggest that this dependency can be simply captured by the relative position of the

item to the state as defined by its layer. Such a dependency can be modeled by a sigmoid function having

as few as three parameters. Exploring this path would be the object of further study. In Section 3, we drew

again on the notion of layers to analyze the retention of learned items. We found a monotonic dependency

between rate of retention of an item and its inner layer relative to the student’s knowledge state at the

time retention is tested. Specifically, when items are positioned in the deeper inner layers of a knowledge

state, there is an apparent reinforcement effect at work, in which the items are retained at an increasingly

higher rate. Along the way, we also noticed effects in the data better explained by behavioral differences

between student populations. Usage of the “I don’t know” answer, introduced purely for the efficiency of the

knowledge assessment, turned out to be indicative of the perceived stake students place in the assessment: a

higher stake assessment such as College Placement is associated with a lower usage of the option. Similarly,

the aggregate success rate for learning an item in one’s outer fringe increases monotonically with the course

grade.

In conclusion, the paper aimed to survey several of the challenges arising in a large-scale application of

a tutoring system that must meet the pedagogical expectations of students and instructors. It is our hope

that the findings presented here validate knowledge space theory as the model on which the system rests.

Moreover we believe that the practical considerations discussed in the paper and the methods introduced to

analyze the data will in turn stimulate new research in knowledge space theory.
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Appendix

We recall here a few major definitions and theorems of knowledge space theory. They can all be found

in Falmagne and Doignon (2011), sometimes in a slightly different form.

Definition A.1. A learning space is a knowledge structure (Q,K) that satisfies the following two conditions.

(i) If K ⊂ L are two knowledge states in K, with |L \K| = n, then there is a chain of states

K0 = K ⊂ K1 ⊂ · · · ⊂ Kn = L

such that Ki = Ki−1 ∪ {qi} with qi ∈ Q \Ki−1 for 1 ≤ i ≤ n.

(ii) If K ⊂ L are two knowledge states in K, with q ∈ Q \K and K ∪ {q} ∈ K for some item q,

then L ∪ {q} ∈ K.

Theorem A.2. For any K ∈ K, let KI and KO denote the inner and outer fringe of K, respectively. If K

is a learning space, then

∀K,L ∈ K : (KI = LI and KO = LO) ⇐⇒ K = L.

Definition A.3. Let (K, Q) be a knowledge structure and Q′ a nonempty proper subset of Q. The family

K|Q′ = {W ⊆ Q′ |W = K ∩Q′ for some K ∈ K}

is called the projection of K on Q′.

Theorem A.4. If (K, Q) is a learning space and Q′ a nonempty proper subset of Q, then (K|Q′ , Q′) is a

learning space.

Definition A.5. For any K,L ∈ K, let d(K,L) denote the set-symmetric distance between K and L. For

any integer n ≥ 0, the family {L ∈ K | d(K,L) ≤ n} is the n-neighborhood of K. For any sub-collection F

of K, the family {L ∈ K | d(K,L) ≤ n for some K in F} is the n-neighborhood of F.

Definition A.6. A probabilistic knowledge structure is a triple (Q,K, p) in which

(i) (Q,K) is a knowledge structure;

(ii) the mapping p : K→ [0, 1] : K 7→ p(K) is a probability distribution on K;

thus, for any K ∈ K, we have p(K) ≥ 0, and moreover, ΣK∈Kp(K) = 1.

Definition A.7. The basic local independence model (BLIM) is a probabilistic knowledge structure (Q,K, p)

that satisfies the following conditions.

(i) For each q ∈ Q, there are two constants βq, ηq ∈ [0, 1[, respectively called (careless) error

probability and guessing probability at q.

(ii) For any response pattern R ⊆ Q and state K ∈ K, the probability of observing R for a subject

in state K is

30



 ∏
q∈K\R

βq

 ∏
q∈K∩R

(1− βq)

 ∏
q∈R\K

ηq

 ∏
q∈Q\(R∪K)

(1− ηq)

 .
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