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Abstract

In this work we introduce and study multiple properties and conditions re-
lated to the modeling of student knowledge in knowledge space theory (KST).
We begin by looking at a property called forgetting consistency, which en-
forces a systematic way of forgetting within a knowledge structure. Next,
we analyze in detail a concept we call positive knowledge correlation. This
concept postulates that knowing more should not make it less likely that
a student knows a particular concept. Among other things, we find that
satisfying positive knowledge correlation implies the knowledge structure is
closed under both union and intersection, and we also perform an empirical
evaluation to assess the validity of the property. Finally, in the context of an
adaptive assessment, we conclude with an analysis of the related concept of
a positively correlated updating rule.

Keywords: knowledge space theory, positive knowledge correlation,
forgetting consistency, positively correlated updating rule

1. Introduction

Knowledge space theory (KST) is a mathematical model of knowledge
introduced by Doignon and Falmagne (1985). Since the time of its intro-
duction, it has been successfully used in many applications involving the
learning and assessment of knowledge (Cosyn et al., 2021; de Chiusole et al.,
2020; Doble et al., 2019; Falmagne et al., 2013; Falmagne and Doignon, 2011;
Hockemeyer et al., 1997; Lynch and Howlin, 2014). In this work we introduce
and examine the implications of multiple properties pertaining to knowledge
spaces and the modeling of student knowledge. We begin by looking at the
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significance of a property we call forgetting consistency. This condition en-
forces a notion of forgetting within the knowledge space, and we show that—
in combination with one other condition—it implies the knowledge space is
closed under intersection. Next, we look at a more general concept we refer
to as positive knowledge correlation. The basic idea of positive knowledge
correlation is that knowing more should not make it less likely for a student
to know something else. We show that this property has fairly strong impli-
cations, as it implies that the knowledge structure is closed under both union
and intersection. Additionally, we give the results of an empirical study that
seemingly supports the concept of positive knowledge correlation. Finally, in
the context of an adaptive assessment, we conclude with a discussion of the
related concept of a positively correlated updating rule.

1.1. Background on Knowledge Space Theory

In this section we briefly introduce a few KST concepts that are necessary
for our subsequent work. Much of this follows the exposition in Falmagne
and Doignon (2011); thus, for a more thorough introduction to KST we refer
the reader there. We begin with the related notions of a knowledge structure
and a knowledge space.

Definition 1.1. A knowledge structure is a pair (Q,K) in which Q is a
nonempty set, and K is a family of subsets of Q, containing at least Q
and the empty set ∅. The set Q is called the domain of the knowledge
structure. Its elements are referred to as questions or items and the subsets
in the family K are labeled (knowledge) states. Since ∪K = Q, we shall
sometimes simply say that K is the knowledge structure when reference to
the underlying domain is not necessary. If a knowledge structure K is closed
under union, we say that K is a knowledge space.

In this work Q is always assumed to be a finite set—thus, as a conse-
quence all the knowledge structures we consider are also finite. Motivated
by pedagogical assumptions, Cosyn and Uzun (2009) introduced two axioms
that define a learning space, a specific type of knowledge structure.

Definition 1.2. A knowledge structure (Q,K) is called a learning space if
it satisfies the following conditions.

[LS] Learning smoothness. For any two states K,L such that K ⊂ L,
there exists a finite chain of states

K = K0 ⊂ K1 ⊂ · · · ⊂ Kp = L
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such that |Ki \Ki−1| = 1 for 1 ≤ i ≤ p and so |L \K| = p.
[LC] Learning consistency. If K,L are two states satisfying K ⊂ L and q

is an item such that K ∪ {q} ∈ K, then L ∪ {q} ∈ K.

A useful concept associated with knowledge structures is well-gradedness,
which we define as in Doignon and Falmagne (1997).

Definition 1.3. Let ∆ denote the standard symmetric difference between
sets. Then, a family of sets F is well-graded if for any A,B ∈ F with
|A∆B| = n, there exists a finite sequence of sets A = K0, K1, . . . , Kn = B
in F such that |Ki−1∆Ki| = 1, i = 1, . . . , n. The sequence of sets A =
K0, K1, . . . , Kn = B satisfying these conditions is called a tight path between
A and B.

A notable result from Cosyn and Uzun (2009) showed that a learning
space is equivalent to a well-graded union-closed family.

Theorem 1.4 (Cosyn and Uzun). Let F be a family of sets containing the
empty set. Then, F is well-graded and union-closed if and only if [LS] and
[LC] are satisfied. In other words, well-graded union-closed families of sets
are characterized by the axioms [LS] and [LC].

2. Forgetting in KST

As the historic focus of KST has been on the learning process, relatively
less attention has been paid to the concept of forgetting. In particular,
the Ebbinghaus forgetting curve (Averell and Heathcote, 2011; Ebbinghaus,
1913) is a model that represents the decay of knowledge over time. Recent
empirical research on the ALEKS system has shown numerous examples of
forgetting curves in the context of an actual implementation of KST (Cosyn
et al., 2021; Matayoshi et al., 2018, 2019, 2020, 2022). Motivated by these
results, we introduce the following condition for forgetting within a knowledge
space.

Definition 2.1. [FC] Forgetting consistency. If K,L are two states satisfying
K ⊂ L and q is an item such that L \ {q} ∈ K, then K \ {q} ∈ K.

Note that [FC] is, in a sense, analogous to [LC], the learning consistency
condition. However, while learning consistency ensures that a student who
knows more is always able to learn the same as a student who knows less,
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forgetting consistency ensures that a student who knows less is able to forget
the same knowledge as a student who knows more. In other words, if a
student who knows more is able to “forget” item q, it seems plausible that a
student with less knowledge is able to forget q as well. Our next result shows
that a knowledge structure satisfying [LS] and [FC] is well-graded and closed
under intersection.

Theorem 2.2. Let K be a knowledge structure satisfying [LS] and [FC].
Then, K is well-graded and closed under intersection.

Proof. Let K,L ∈ K. We first show that K ∩L ∈ K. By [LS], there exists a
tight path from K to Q = ∪K given by

K = K0 ⊂ K1 = K ∪ {k1} ⊂ · · ·
⊂ Kn−1 = K ∪ {k1, . . . , kn−1} ⊂ Q = Kn = K ∪ {k1, . . . , kn}, (2.1)

where n = |Q \ K|. Consider kn ∈ Kn \ Kn−1. By [FC] we have that
L \ {kn} ∈ K, as L ⊆ Kn = Q and Kn \ {kn} = Kn−1 ∈ K. Then, applying a
similar procedure with kn−1 ∈ Kn−1\Kn−2, it follows that L\{kn−1, kn} ∈ K.
Iteratively applying this procedure a total of n times, we end with M =
L \ {k1, k2, . . . , kn−1, kn} ∈ K, where each ki ∈ Ki \ Ki−1 for i = 1, . . . , n.
Note that since {k1, k2, . . . , kn−1, kn} = Q \K, we have that

M = L \ {k1, k2, . . . , kn−1, kn}
= L \ (Q \K)

= L \ (L \K)

= K ∩ L.

Thus, K ∩ L ∈ K, and it follows that K is closed under intersection.
We next show that a tight path exists from K to L. To start, consider

the sequence from K to K ∩ L given by

K = A0 ⊃ A1 = L \ {a1} ⊃ · · ·
⊃ Am−1 = L \ {a1, . . . , am−1} ⊃ L \ {a1, . . . , am−1, am} = K ∩ L, (2.2)

where m = |K \ L|; note this sequence exists since [LS] holds for K. Next,
we can define an analogous sequence from L to K ∩ L as

L = B0 ⊃ B1 = L \ {b1} ⊃ · · ·
⊃ Bn−1 = L \ {b1, . . . , bn−1} ⊃ L \ {b1, . . . , bn−1, bn} = K ∩ L, (2.3)
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where n = |L \ K|; as before, this sequence exists since K satisfies [LS].
Concatenating these two sequences, we now have a sequence from K to L of
length m+ n = |K∆L|, and the well-gradedness of K then follows.

Combining Theorem 2.2 with Theorem 1.4, we immediately get the fol-
lowing.

Corollary 2.3. Let K be a knowledge structure satisfying [LS], [LC], and
[FC]. Then, K is a well-graded knowledge structure that is closed under union
and intersection.

3. Positive Knowledge Correlation

In Section 2 we introduced forgetting consistency, which is analogous
to the learning consistency condition that is required of a learning space.
Our next goal is to develop a set of conditions that we refer to as positive
knowledge correlation. In what follows, we assume that, for a set of items
Q, we have a probability distribution on P(Q), the power set of Q. This
probability distribution might represent the distribution of the states in a
knowledge structure, with this distribution being derived from some reference
population of students. Or, as another example, the probability distribution
could represent the uncertainty around a particular student’s knowledge state
during a KST-based assessment.

The main idea behind the concept of positive knowledge correlation is that
knowing more should make it more likely—or, at the very least, it should not
make it less likely—that a student knows a particular item q. Conversely,
knowing less should make it less likely—or, at the very least, it should not
make it more likely—that a student knows an item q. As we discuss in more
detail in the next subsection, in some sense these conditions can be viewed
as probabilistic analogues of learning and forgetting consistency.

3.1. Conditions for Positive Knowledge Correlation

We begin with the following definition.

Definition 3.1. For a nonempty set of items Q, let P be a probability
distribution on P(Q), the power set of Q. Define the set family

KP = {K ⊆ Q |P (K) > 0}. (3.1)

If P (∅) > 0 and P (Q) > 0, it follows that (Q,KP ) is a knowledge structure;
in such a case, we say it is the knowledge structure induced by P .

5



We note that, as defined above, KP is also sometimes referred to as the
support of P (see, for example, Definition 14.2.2 in Falmagne and Doignon,
2011). Next, in what follows we need to make use of the following standard
definitions from order theory.

Definition 3.2. Let Q be a set of items. For a set A ⊆ Q, the upper closure
of A is defined as

{B ⊆ Q |A ⊆ B}, (3.2)

while the lower closure of A is given by

{B ⊆ Q |B ⊆ A}. (3.3)

The next definition gives us a convenient way of representing sets of items
that are known or not known.

Definition 3.3. Let Q be a set of items. For a set A ⊆ Q let I+
A be the

upper closure of A and I−A be the lower closure of Ac; that is,

I+
A = {B ⊆ Q |A ⊆ B} (3.4)

and

I−A = {B ⊆ Q |B ⊆ Ac}
= {B ⊆ Q |A ∩B = ∅}. (3.5)

Plainly speaking, I+
A consists of all the sets that contain all the items from

A; intuitively, these are the sets where all the items in A are known. Then,
I−A consists of all the sets containing no items from A; in this case, these are
the sets where none of the items in A are known.

Given a family F ⊆ P(Q), we next define

P (F) :=


0 if F is empty,∑

K∈F

P (K) otherwise. (3.6)

Using the above definition, for A,B,C ⊆ Q, if
∑

K∈I+B∩I
−
C
P (K) > 0 we can

compute

P
(
I+
A

∣∣ I+
B , I

−
C

)
=
P
(
I+
A ∩ I

+
B ∩ I

−
C

)
P
(
I+
B ∩ I

−
C

)
=

∑
K∈I+A∩I

+
B∩I

−
C
P (K)∑

K∈I+B∩I
−
C
P (K)

. (3.7)
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That is, P
(
I+
A

∣∣ I+
B , I

−
C

)
is the conditional probability of knowing the items

in A, given that all the items in B are known and none of the items in C are
known.

With these definitions in hand, we are now ready to introduce the concept
of positive knowledge correlation.

Definition 3.4. Let Q be a set of items and P be a probability distribution
on P(Q). Let q, r ∈ Q and B,C ⊆ Q. Suppose that

P
(
I+
{q}

∣∣∣ I+
B∪{r}, I

−
C

)
≥ P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
(3.8)

whenever P
(
I+
B∪{r} ∩ I

−
C

)
> 0. In such a case, we say that P satisfies the

property of positive knowledge correlation.

In words, (3.8) says that, compared to knowing only the items in B,
knowing all the items in B ∪ {r} should not decrease the probability of

knowing q. Also, notice that by requiring P
(
I+
B∪{r} ∩ I

−
C

)
> 0 it implicitly

follows that P
(
I+
B ∩ I

−
C

)
> 0 as well. To see this, observe that I+

B∪{r} ∩ I
−
C ⊆

I+
B ∩ I

−
C , which implies that

P
(
I+
B ∩ I

−
C

)
≥ P

(
I+
B∪{r} ∩ I

−
C

)
> 0.

As such, both conditional probabilities in (3.8) are well-defined. Note that
we use requirements of a similar form for many of our subsequent results.

Our next result shows that, if we assume the relevant conditional prob-
abilities are all well-defined, the property of positive knowledge correlation
can be formulated in several equivalent ways.

Theorem 3.5. Let Q, P , q, r, B, and C be as in Definition 3.4. Assume

that P
(
I+
B∪{r} ∩ I

−
C

)
> 0 and P

(
I+
B ∩ I

−
C∪{r}

)
> 0. Then, the following

inequalities are all equivalent.

(i) P
(
I+
{q}

∣∣∣ I+
B∪{r}, I

−
C

)
≥ P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
(ii) P

(
I+
{q}

∣∣∣ I+
B , I

−
C∪{r}

)
≤ P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
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(iii) P
(
I−{q}

∣∣∣ I+
B , I

−
C∪{r}

)
≥ P

(
I−{q}

∣∣∣ I+
B , I

−
C

)
(iv) P

(
I−{q}

∣∣∣ I+
B∪{r}, I

−
C

)
≤ P

(
I−{q}

∣∣∣ I+
B , I

−
C

)
Proof.
(i) =⇒ (ii):
We have

P
(
I+
{q}

∣∣∣ I+
B , I

−
C∪{r}

)
=
P
(
I+
{q} ∩ I

+
B ∩ I

−
{r} ∩ I

−
C

)
P
(
I+
B ∩ I

−
{r} ∩ I

−
C

)
=
P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
− P

(
I+
{q} ∩ I

+
{r} ∩ I

+
B ∩ I

−
C

)
P
(
I+
B ∩ I

−
{r} ∩ I

−
C

)
=
P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
− P

(
I+
{q}

∣∣∣ I+
B∪{r}, I

−
C

)
· P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
P
(
I+
B ∩ I

−
{r} ∩ I

−
C

)
≤
P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
− P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
· P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
P
(
I+
B ∩ I

−
{r} ∩ I

−
C

) ,
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where the inequality in the last line follows from (i). Next, we have

=
P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
− P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
· P
(
I+
B ∩ I

−
C

)
· P
(
I+
{r}

∣∣∣ I+
B , I

−
C

)
P
(
I+
B ∩ I

−
{r} ∩ I

−
C

)
=
P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
− P

(
I+
{q} ∩ I

+
B ∩ I

−
C

)
· P
(
I+
{r}

∣∣∣ I+
B , I

−
C

)
P
(
I+
B ∩ I

−
{r} ∩ I

−
C

)
= P

(
I+
{q} ∩ I

+
B ∩ I

−
C

) 1− P
(
I+
{r}

∣∣∣ I+
B , I

−
C

)
P
(
I+
B ∩ I

−
{r} ∩ I

−
C

)
= P

(
I+
{q}

∣∣∣ I+
B , I

−
C

) 1− P
(
I+
{r}

∣∣∣ I+
B , I

−
C

)
P
(
I−{r}

∣∣∣ I+
B , I

−
C

)
= P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
.

(ii) =⇒ (iii):
Starting from (ii) we have

P
(
I+
{q}

∣∣∣ I+
B , I

−
C∪{r}

)
≤ P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
⇐⇒ 1− P

(
I−{q}

∣∣∣ I+
B , I

−
C∪{r}

)
≤ 1− P

(
I−{q}

∣∣∣ I+
B , I

−
C

)
⇐⇒ P

(
I−{q}

∣∣∣ I+
B , I

−
C

)
≤ P

(
I−{q}

∣∣∣ I+
B , I

−
C∪{r}

)
,

as claimed.
(iii) =⇒ (iv):
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We have

P
(
I−{q}

∣∣∣ I+
B∪{r}, I

−
C

)
=
P
(
I+
{r} ∩ I

+
B ∩ I

−
{q} ∩ I

−
C

)
P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
=
P
(
I+
B ∩ I

−
{q} ∩ I

−
C

)
− P

(
I+
B ∩ I

−
{q} ∩ I

−
{r} ∩ I

−
C

)
P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
=
P
(
I+
B ∩ I

−
{q} ∩ I

−
C

)
− P

(
I−{q}

∣∣∣ I+
B , I

−
C∪{r}

)
· P
(
I+
B ∩ I

−
{r} ∩ I

−
C

)
P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
≤
P
(
I+
B ∩ I

−
{q} ∩ I

−
C

)
− P

(
I−{q}

∣∣∣ I+
B , I

−
C

)
· P
(
I+
B ∩ I

−
{r} ∩ I

−
C

)
P
(
I+
{r} ∩ I

+
B ∩ I

−
C

) ,

where the inequality in the last line follows from (iii). Next, we have

=
P
(
I+
B ∩ I

−
{q} ∩ I

−
C

)
− P

(
I−{q}

∣∣∣ I+
B , I

−
C

)
· P
(
I+
B ∩ I

−
C

)
· P
(
I−{r}

∣∣∣ I+
B , I

−
C

)
P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
=
P
(
I+
B ∩ I

−
{q} ∩ I

−
C

)
− P

(
I+
B ∩ I

−
{q} ∩ I

−
C

)
· P
(
I−{r}

∣∣∣ I+
B , I

−
C

)
P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
= P

(
I+
B ∩ I

−
{q} ∩ I

−
C

) 1− P
(
I−{r}

∣∣∣ I+
B , I

−
C

)
P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
= P

(
I−{q}

∣∣∣ I+
B , I

−
C

) 1− P
(
I−{r}

∣∣∣ I+
B , I

−
C

)
P
(
I+
{r}

∣∣∣ I+
B , I

−
C

)
= P

(
I−{q}

∣∣∣ I+
B , I

−
C

)
.

(iv) =⇒ (i):
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Starting from (iv) we have

P
(
I−{q}

∣∣∣ I+
B∪{r}, I

−
C

)
≤ P

(
I−{q}

∣∣∣ I+
B , I

−
C

)
⇐⇒ 1− P

(
I+
{q}

∣∣∣ I+
B∪{r}, I

−
C

)
≤ 1− P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
⇐⇒ P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
≤ P

(
I+
{q}

∣∣∣ I+
B∪{r}, I

−
C

)
,

as claimed.

Theorem 3.5 shows there are several equivalent ways to view the concept
of positive knowledge correlation. That is, while the formulation in (i) is in
terms of knowing more—analogous to the learning consistency condition—
the concept of positive knowledge correlation can also be viewed as a condi-
tion on knowing less, such as in (ii). Furthermore, analogous to forgetting
consistency, (iii) implies that knowing less should not lower the probability
of an item q being unknown.

Notice that the inequalities listed in Definition 3.4 and Theorem 3.5 are
all stated in terms of the probability of knowing—or, not knowing—a single
item. Our next result shows that, perhaps surprisingly, the more general
case of knowing or not knowing groups of items is implied by these simpler
inequalities.

Theorem 3.6. Let Q, P , q, and r be as in Definition 3.4. Furthermore,
let A, B1, B2, C1 and C2 be subsets of Q such that B1 ⊆ B2, C1 ⊆ C2,
P
(
I+
B2
∩ I−C1

)
> 0, and P

(
I+
B1
∩ I−C2

)
> 0. Assume that Definition 3.4 holds.

Then, the following hold as well.

(a) P
(
I+
A

∣∣ I+
B2
, I−C1

)
≥ P

(
I+
A

∣∣ I+
B1
, I−C2

)
(b) P

(
I−A
∣∣ I+

B2
, I−C1

)
≤ P

(
I−A
∣∣ I+

B1
, I−C2

)
Proof.

(a) P
(
I+
A

∣∣ I+
B2
, I−C1

)
≥ P

(
I+
A

∣∣ I+
B1
, I−C2

)
:

To start, suppose P
(
I+
A ∩ I

+
B1
∩ I−C1

)
= 0. Observe that

I+
A ∩ I

+
B2
∩ I−C1

⊆ I+
A ∩ I

+
B1
∩ I−C1
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and

I+
A ∩ I

+
B1
∩ I−C2

⊆ I+
A ∩ I

+
B1
∩ I−C1

,

from which it follows that

P
(
I+
A

∣∣ I+
B2
, I−C1

)
= P

(
I+
A

∣∣ I+
B1
, I−C2

)
= 0.

Next, assume P
(
I+
A ∩ I

+
B1
∩ I−C1

)
> 0. Let B2 \ B1 = {b1, b2, . . . , bn} and

A = {a1, a2, . . . , ak}. Note that for any A′ ⊆ A we have

I+
A ∩ I

+
B1
∩ I−C1

⊆ I+
A′ ∩ I

+
B1
∩ I−C1

,

which implies that

P
(
I+
A′ ∩ I

+
B1
∩ I−C1

)
≥ P

(
I+
A ∩ I

+
B1
∩ I−C1

)
> 0. (3.9)

From (3.8) it then follows that

P
(
I+
{b1}

∣∣∣ I+
B1
, I−C1

)
≤ P

(
I+
{b1}

∣∣∣ I+
B1∪{a1}, I

−
C1

)
,

where both conditional probabilities are well-defined by 3.9. Repeatedly
applying (3.8) to a1 through ak, we get

P
(
I+
{b1}

∣∣∣ I+
B1
, I−C1

)
≤ P

(
I+
{b1}

∣∣∣ I+
B1∪{a1}, I

−
C1

)
≤ P

(
I+
{b1}

∣∣∣ I+
B1∪{a1,a2}, I

−
C1

)
...

≤ P
(
I+
{b1}

∣∣∣ I+
B1∪{a1,...,ak}, I

−
C1

)
= P

(
I+
{b1}

∣∣∣ I+
A , I

+
B1
, I−C1

)
,

where each of the conditional probabilities is well-defined by 3.9. We then
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have

P
(
I+
{b1}

∣∣∣ I+
A , I

+
B1
, I−C1

)
≥ P

(
I+
{b1}

∣∣∣ I+
B1
, I−C1

)
⇐⇒

P
(
I+
{b1} ∩ I

+
A ∩ I

+
B1
∩ I−C1

)
P
(
I+
A ∩ I

+
B1
∩ I−C1

) ≥
P
(
I+
{b1} ∩ I

+
B1
∩ I−C1

)
P
(
I+
B1
∩ I−C1

)
⇐⇒

P
(
I+
{b1} ∩ I

+
A ∩ I

+
B1
∩ I−C1

)
P
(
I+
{b1} ∩ I

+
B1
∩ I−C1

) ≥
P
(
I+
A ∩ I

+
B1
∩ I−C1

)
P
(
I+
B1
∩ I−C1

)
⇐⇒ P

(
I+
A

∣∣∣ I+
B1∪{b1}, I

−
C1

)
≥ P

(
I+
A

∣∣ I+
B1
, I−C1

)
.

Applying a similar procedure to b2 through bn, it follows that

P
(
I+
A

∣∣ I+
B2
, I−C1

)
≥ P

(
I+
A

∣∣ I+
B1
, I−C1

)
. (3.10)

Next, let C2 \ C1 = {c1, c2, . . . , cm}. Repeatedly applying (3.8) gives

P
(
I−{c1}

∣∣∣ I+
B1
, I−C1

)
= 1− P

(
I+
{c1}

∣∣∣ I+
B1
, I−C1

)
≥ 1− P

(
I+
{c1}

∣∣∣ I+
B1∪{a1}, I

−
C1

)
≥ 1− P

(
I+
{c1}

∣∣∣ I+
B1∪{a1,a2}, I

−
C1

)
...

≥ 1− P
(
I+
{c1}

∣∣∣ I+
B1∪{a1,...,ak}, I

−
C1

)
= 1− P

(
I+
{c1}

∣∣∣ I+
A , I

+
B1
, I−C1

)
= P

(
I−{c1}

∣∣∣ I+
A , I

+
B1
, I−C1

)
,

where each of the conditional probabilities is well-defined by 3.9. We then

13



have

P
(
I−{c1}

∣∣∣ I+
B1
, I−C1

)
≥ P

(
I−{c1}

∣∣∣ I+
A , I

+
B1
, I−C1

)
⇐⇒

P
(
I+
B1
∩ I−{c1} ∩ I

−
C1

)
P
(
I+
B1
∩ I−C1

) ≥
P
(
I+
A ∩ I

+
B1
∩ I−{c1} ∩ I

−
C1

)
P
(
I+
A ∩ I

+
B1
∩ I−C1

)
⇐⇒

P
(
I+
A ∩ I

+
B1
∩ I−C1

)
P
(
I+
B1
∩ I−C1

) ≥
P
(
I+
A ∩ I

+
B1
∩ I−{c1} ∩ I

−
C1

)
P
(
I+
B1
∩ I−{c1} ∩ I

−
C1

)
⇐⇒ P

(
I+
A

∣∣ I+
B1
, I−C1

)
≥ P

(
I+
A

∣∣∣ I+
B1
, I−C1∪{c1}

)
.

Applying a similar procedure to c2 through cm, it follows that

P
(
I+
A

∣∣ I+
B1
, I−C1

)
≥ P

(
I+
A

∣∣ I+
B1
, I−C2

)
. (3.11)

Combining (3.10) and (3.11) we arrive at the claimed inequality (a):

P
(
I+
A

∣∣ I+
B2
, I−C1

)
≥ P

(
I+
A

∣∣ I+
B1
, I−C1

)
≥ P

(
I+
A

∣∣ I+
B1
, I−C2

)
. (3.12)

(b) P
(
I−A
∣∣ I+

B2
, I−C1

)
≤ P

(
I−A
∣∣ I+

B1
, I−C2

)
:

To start, suppose P
(
I−A ∩ I

+
B1
∩ I−C1

)
= 0. Then,

I−A ∩ I
+
B2
∩ I−C1

⊆ I−A ∩ I
+
B1
∩ I−C1

and

I−A ∩ I
+
B1
∩ I−C2

⊆ I−A ∩ I
+
B1
∩ I−C1

,

from which it follows that

P
(
I−A
∣∣ I+

B2
, I−C1

)
= P

(
I−A
∣∣ I+

B1
, I−C2

)
= 0.

Next, assume P
(
I−A ∩ I

+
B1
∩ I−C1

)
> 0. Let B2 \ B1 = {b1, b2, . . . , bn} and

A = {a1, a2, . . . , ak}. Note that for any A′ ⊆ A we have

I−A ∩ I
+
B1
∩ I−C1

⊆ I−A′ ∩ I
+
B1
∩ I−C1

,

14



which implies that

P
(
I−A′ ∩ I

+
B1
∩ I−C1

)
≥ P

(
I−A ∩ I

+
B1
∩ I−C1

)
> 0. (3.13)

From (ii) in Theorem 3.5 it then follows that

P
(
I+
{b1}

∣∣∣ I+
B1
, I−C1

)
≥ P

(
I+
{b1}

∣∣∣ I+
B1
, I−C1∪{a1}

)
,

where both conditional probabilities are well-defined by 3.13. Repeatedly
applying (ii) in Theorem 3.5 to a1 through ak, we get

P
(
I+
{b1}

∣∣∣ I+
B1
, I−C1

)
≥ P

(
I+
{b1}

∣∣∣ I+
B1
, I−C1∪{a1}

)
≥ P

(
I+
{b1}

∣∣∣ I+
B1
, I−C1∪{a1,a2}

)
...

≥ P
(
I+
{b1}

∣∣∣ I+
B1
, I−C1∪{a1,...,ak}

)
= P

(
I+
{b1}

∣∣∣ I+
B1
, I−A , I

−
C1

)
,

where each of the conditional probabilities is well-defined by 3.13. We then
have

P
(
I+
{b1}

∣∣∣ I+
B1
, I−C1

)
≥ P

(
I+
{b1}

∣∣∣ I+
B1
, I−A , I

−
C1

)
⇐⇒

P
(
I+
{b1} ∩ I

+
B1
∩ I−C1

)
P
(
I+
B1
∩ I−C1

) ≥
P
(
I+
{b1} ∩ I

+
B1
∩ I−A ∩ I

−
C1

)
P
(
I+
B1
∩ I−A ∩ I

−
C1

)
⇐⇒

P
(
I+
B1
∩ I−A ∩ I

−
C1

)
P
(
I+
B1
∩ I−C1

) ≥
P
(
I+
{b1} ∩ I

+
B1
∩ I−A ∩ I

−
C1

)
P
(
I+
{b1} ∩ I

+
B1
∩ I−C1

)
⇐⇒ P

(
I−A
∣∣ I+

B1
, I−C1

)
≥ P

(
I−A

∣∣∣ I+
B1∪{b1}, I

−
C1

)
.

Applying a similar procedure to b2 through bn, it follows that

P
(
I−A
∣∣ I+

B1
, I−C1

)
≥ P

(
I−A
∣∣ I+

B2
, I−C1

)
. (3.14)
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Next, let C2 \ C1 = {c1, c2, . . . , cm}. Repeatedly applying (iii) from Theo-
rem 3.5 gives

P
(
I−{c1}

∣∣∣ I+
B1
, I−C1

)
≤ P

(
I−{c1}

∣∣∣ I+
B1
, I−C1∪{a1}

)
≤ P

(
I−{c1}

∣∣∣ I+
B1
, I−C1∪{a1,a2}

)
...

≤ P
(
I−{c1}

∣∣∣ I+
B1
, I−C1∪{a1,...,ak}

)
= P

(
I−{c1}

∣∣∣ I+
B1
, I−A , I

−
C1

)
,

where each of the conditional probabilities is well-defined by 3.13. We then
have

P
(
I−{c1}

∣∣∣ I+
B1
, I−C1

)
≤ P

(
I−{c1}

∣∣∣ I+
B1
, I−A , I

−
C1

)
⇐⇒

P
(
I+
B1
∩ I−{c1} ∩ I

−
C1

)
P
(
I+
B1
∩ I−C1

) ≤
P
(
I+
B1
∩ I−{c1} ∩ I

−
A ∩ I

−
C1

)
P
(
I+
B1
∩ I−A ∩ I

−
C1

)
⇐⇒

P
(
I+
B1
∩ I−A ∩ I

−
C1

)
P
(
I+
B1
∩ I−C1

) ≤
P
(
I+
B1
∩ I−{c1} ∩ I

−
A ∩ I

−
C1

)
P
(
I+
B1
∩ I−{c1} ∩ I

−
C1

)
⇐⇒ P

(
I−A
∣∣ I+

B1
, I−C1

)
≤ P

(
I−A

∣∣∣ I+
B1
, I−C1∪{c1}

)
.

Applying a similar procedure to c2 through cm, it follows that

P
(
I−A
∣∣ I+

B1
, I−C1

)
≤ P

(
I−A
∣∣ I+

B1
, I−C2

)
. (3.15)

Combining (3.14) and (3.15) we arrive at the claimed inequality (b):

P
(
I−A
∣∣ I+

B2
, I−C1

)
≤ P

(
I−A
∣∣ I+

B1
, I−C1

)
≤ P

(
I−A
∣∣ I+

B1
, I−C2

)
. (3.16)

In a sense, positive knowledge correlation can be interpreted as a prob-
abilistic analogue of [LC], the learning consistency condition, and [FC], the
forgetting consistency condition. Recall that the learning consistency con-
dition postulates that knowing more does not prevent the learning of some-
thing new. In comparison, positive knowledge correlation can be interpreted
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as saying that knowing more does not make knowing something else less
likely. Then, as the forgetting consistency condition postulates that knowing
less does not prevent the forgetting of something already learned, positive
knowledge correlation says that knowing less makes it less likely that some-
thing else is known. To help us formalize these ideas, we next introduce the
following conditions, which can be thought of as slightly weaker versions of
the property of positive knowledge correlation.

Definition 3.7. Let Q be a set of items and P be a probability distribution
on P(Q). We define the following two conditions.

3(a) For any q ∈ Q and B,C ⊆ Q, where C 6= ∅, we have

P
(
I+
{q}

∣∣∣ I+
B , I

−
C

)
≥ P

(
I+
{q}

∣∣∣ I−C) , (3.17)

whenever the conditional probabilities are well-defined.

3(b) For any q ∈ Q and B,C ⊆ Q, where B 6= ∅, we have

P
(
I+
{q}

∣∣∣ I+
B , I

−
C

)
≤ P

(
I+
{q}

∣∣∣ I+
B

)
, (3.18)

whenever the conditional probabilities are well-defined.

The formulation in Theorem 3.6 makes it clear that both 3(a) and 3(b) fol-
low directly from the property of positive knowledge correlation—however, as
these new conditions are similar in form to the inequalities in Definition 3.4,
it’s not completely clear that they are weaker properties. To show this is in
fact the case, we next give examples where 3(a) and 3(b) are satisfied, but
positive knowledge correlation fails to hold.

Example 3.8. For Q = {x, y, z} and 0 < α < 1
8
, consider the following

probability distribution P on P(Q).

P ({x}) = P ({y}) =
1

8
+ α P ({z}) = α

P ({x, z}) = P ({y, z}) =
1

8
− α P ({x, y}) =

1

4
− α

P ({x, y, z}) = α P (∅) =
1

4
− α

17



Note that, as the states correspond to the power set of {x, y, z}, K = KP is
closed under both union and intersection.

• 3(a) 6=⇒ Definition 3.4:

Starting with 3(a), note that the following inequalities all hold when α ≤ 1
16

.

P
(
I+
{x}

∣∣∣ I+
{y}, I

−
{z}

)
=

2

3
− 8

3
α ≥ 1

2
= P

(
I+
{x}

∣∣∣ I−{z})
P
(
I+
{y}

∣∣∣ I+
{x}, I

−
{z}

)
=

2

3
− 8

3
α ≥ 1

2
= P

(
I+
{y}

∣∣∣ I−{z})
P
(
I+
{x}

∣∣∣ I+
{z}, I

−
{y}

)
= 1− 8α ≥ 1

2
= P

(
I+
{x}

∣∣∣ I−{y})
P
(
I+
{y}

∣∣∣ I+
{z}, I

−
{x}

)
= 1− 8α ≥ 1

2
= P

(
I+
{y}

∣∣∣ I−{x})
P
(
I+
{z}

∣∣∣ I+
{x}, I

−
{y}

)
=

1

2
− 4α ≥ 1

4
= P

(
I+
{z}

∣∣∣ I−{y})
P
(
I+
{z}

∣∣∣ I+
{y}, I

−
{x}

)
=

1

2
− 4α ≥ 1

4
= P

(
I+
{z}

∣∣∣ I−{x})
(3.19)

Thus, while we’ve now shown that 3(a) holds for α ≤ 1
16

, notice that for
α < 1

16
we have

P
(
I+
{z}

∣∣∣ I+
{x,y}

)
= 4α <

1

4
= P

(
I+
{z}

∣∣∣ I+
{x}

)
, (3.20)

contradicting (3.8). Combining this result with the fact that 3(a) is implied
by the property of positive knowledge correlation, we can now see that 3(a)
is in fact the weaker condition.

• 3(b) 6=⇒ Definition 3.4:

We next turn to 3(b). Note that the following inequalities all hold when
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1
16
≤ α < 1

8
.

P
(
I+
{x}

∣∣∣ I+
{y}, I

−
{z}

)
=

2

3
− 8

3
α ≤ 1

2
= P

(
I+
{x}

∣∣∣ I+
{y}

)
P
(
I+
{y}

∣∣∣ I+
{x}, I

−
{z}

)
=

2

3
− 8

3
α ≤ 1

2
= P

(
I+
{y}

∣∣∣ I+
{x}

)
P
(
I+
{x}

∣∣∣ I+
{z}, I

−
{y}

)
= 1− 8α ≤ 1

2
= P

(
I+
{x}

∣∣∣ I+
{z}

)
P
(
I+
{y}

∣∣∣ I+
{z}, I

−
{x}

)
= 1− 8α ≤ 1

2
= P

(
I+
{y}

∣∣∣ I+
{z}

)
P
(
I+
{z}

∣∣∣ I+
{x}, I

−
{y}

)
=

1

2
− 4α ≤ 1

4
= P

(
I+
{z}

∣∣∣ I+
{x}

)
P
(
I+
{z}

∣∣∣ I+
{y}, I

−
{x}

)
=

1

2
− 4α ≤ 1

4
= P

(
I+
{z}

∣∣∣ I+
{y}

)
(3.21)

Thus, we have now shown that 3(b) holds for 1
16
≤ α < 1

8
. However, for

1
16
< α < 1

8
we get

P
(
I+
{z}

∣∣∣ I+
{x}, I

−
{y}

)
=

1

2
− 4α <

1

4
= P

(
I+
{z}

∣∣∣ I−{y}) , (3.22)

contradicting (3.8); thus, the property of positive knowledge correlation does
not follow from 3(b).

The previous example shows that each condition in Definition 3.7 is
weaker than the property of positive knowledge correlation. Additionally,
Example 3.8 is important for another reason. While we will eventually show
that the conditions in Definition 3.7 are useful from a technical perspective,
the example suggests they are not as compelling for modeling student knowl-
edge. Specifically, while 3(a) holds when α < 1

16
, from (3.20) we can see that,

in comparison to knowing only x, knowing both x and y makes it less likely
that z is known, which runs counter to the motivation for the property of
positive knowledge correlation. Similarly, while 3(b) holds when α > 1

16
,

(3.22) shows that, in comparison to not knowing y, adding the additional
assumption of knowing x makes it less likely that z is known, which again
goes against the intuition of positive knowledge correlation. Thus, while we
will see shortly that the conditions in Definition 3.7 have important implica-
tions, for the above reasons we choose to formulate the property of positive
knowledge correlation as done in Definition 3.4.
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Before moving on to the main consequences of the conditions in Defi-
nition 3.7—and, hence, the property of positive knowledge correlation—we
need to derive the following equivalent forms of these conditions.

Lemma 3.9. Let Q be a set of items and P be a probability distribution on
P(Q).

(a) Condition 3(a) can be equivalently written as follows:

For any q ∈ Q and B,C ⊆ Q, where C 6= ∅, we have

P
(
I+
B

∣∣∣ I+
{q}, I

−
C

)
≥ P

(
I+
B

∣∣ I−C ) (3.23)

whenever the conditional probabilities are well-defined.

(b) Condition 3(b) can be equivalently written as follows:

For any q ∈ Q and B,C ⊆ Q, where B 6= ∅, we have

P
(
I−C
∣∣I+
B

)
≤ P

(
I−C
∣∣ I+

B , I
−
{q}

)
, (3.24)

whenever the conditional probabilities are well-defined.

Proof.

(a) From the definition of conditional probability, 3(a) can be written as

P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
P
(
I+
B ∩ I

−
C

) ≥
P
(
I+
{q} ∩ I

−
C

)
P
(
I−C
)

⇐⇒
P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
P
(
I+
{q} ∩ I

−
C

) ≥
P
(
I+
B ∩ I

−
C

)
P
(
I−C
)

⇐⇒ P
(
I+
B

∣∣∣ I+
{q}, I

−
C

)
≥ P

(
I+
B

∣∣ I−C ) .
(b) 3(b) can be equivalently written as

1− P
(
I−{q}

∣∣∣ I+
B , I

−
C

)
≤ 1− P

(
I−{q}

∣∣∣ I+
B

)
⇐⇒ P

(
I−{q}

∣∣∣ I+
B

)
≤ P

(
I−{q}

∣∣∣ I+
B , I

−
C

)
.
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From the definition of conditional probability, the last inequality can
be written as follows.

P
(
I+
B ∩ I

−
{q}

)
P
(
I+
B

) ≤
P
(
I+
B ∩ I

−
{q} ∩ I

−
C

)
P
(
I+
B ∩ I

−
C

)
⇐⇒

P
(
I+
B ∩ I

−
C

)
P
(
I+
B

) ≤
P
(
I+
B ∩ I

−
{q} ∩ I

−
C

)
P
(
I+
B ∩ I

−
{q}

)
⇐⇒ P

(
I−C
∣∣I+
B

)
≤ P

(
I−C
∣∣ I+

B , I
−
{q}

)

Lemma 3.10. Let Q be a set of items and P be a probability distribution on
P(Q), where P (∅) > 0 and P (Q) > 0. Suppose also that 3(a) holds. Then,
the knowledge structure K = KP satisfies the learning consistency condition
[LC].

Proof. Let K,L ∈ K with K ⊂ L and let q be an item in Q such that
K ∪ {q} ∈ K. From (3.1) we know that P (K ∪ {q}) > 0. In order for
learning consistency to hold, we need to show that P (L∪{q}) > 0. We have

P (L ∪ {q}) = P
(
I+
L ∩ I

+
{q} ∩ I

−
(L∪{q})c

)
= P

(
I+
L

∣∣∣ I+
{q}, I

−
(L∪{q})c

)
· P
(
I+
{q} ∩ I

−
(L∪{q})c

)
, (3.25)
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where the second equality uses the definition of conditional probability. Note

that P
(
I+
{q} ∩ I

−
(L∪{q})c

)
> 0 since K∪{q} ∈ I+

{q}∩I
−
(L∪{q})c , and so the above

conditional probability is well-defined. Next, notice that if L ∪ {q} = Q we
are done, as P (Q) > 0 by assumption. Thus, assuming L ∪ {q} 6= Q, which
implies that (L ∪ {q})c 6= ∅, we can then apply 3.23 to get

≥ P
(
I+
L

∣∣∣ I−(L∪{q})c) · P (I+
{q} ∩ I

−
(L∪{q})c

)
by 3.23

=
P
(
I+
L ∩ I

−
(L∪{q})c

)
P
(
I−(L∪{q})c

) · P
(
I+
{q} ∩ I

−
(L∪{q})c

)
≥ P (L)

P
(
I−(L∪{q})c

) · P (I+
{q} ∩ I

−
(L∪{q})c

)
since L ∈ I+

L ∩ I
−
(L∪{q})c

≥ P (L) · P
(
I+
{q} ∩ I

−
(L∪{q})c

)
≥ P (L) · P (K ∪ {q}) since K ∪ {q} ∈ I+

{q} ∩ I
−
(L∪{q})c

> 0,

where the last inequality follows from the fact that L ∈ K and K ∪ {q} ∈
K.

Lemma 3.11. Let Q be a set of items and P be a probability distribution
on P(Q), where P (∅) > 0 and P (Q) > 0. Suppose also that 3(b) holds.
Then, the knowledge structure K = KP satisfies the forgetting consistency
condition [FC].

Proof. Let K,L ∈ K with K ⊂ L and let q be an item in K such that
L \ {q} ∈ K. From (3.1) we know that P (L \ {q}) > 0. In order for
forgetting consistency to hold, we need to show that P (K \ {q}) > 0. We
have

P (K \ {q}) = P
(
I+
K\{q} ∩ I

−
{q} ∩ I

−
Kc

)
= P

(
I−Kc

∣∣∣ I+
K\{q}, I

−
{q}

)
· P
(
I+
K\{q} ∩ I

−
{q}

)
, (3.26)
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where the second equality uses the definition of conditional probability. Note

that P
(
I+
K\{q} ∩ I

−
{q}

)
> 0 since L \ {q} ∈ I+

K\{q} ∩ I
−
{q}, and so the above

conditional probability is well-defined. Next, notice that if K \ {q} = ∅ we
are done, as P (∅) > 0 by assumption. Thus, assuming K \ {q} 6= ∅, we can
apply 3.24 to get

≥ P
(
I−Kc

∣∣∣ I+
K\{q}

)
· P
(
I+
K\{q} ∩ I

−
{q}

)
by 3.24

=
P
(
I+
K\{q} ∩ I

−
Kc

)
P
(
I+
K\{q}

) · P
(
I+
K\{q} ∩ I

−
{q}

)
≥ P (K)

P
(
I+
K\{q}

) · P (I+
K\{q} ∩ I

−
{q}

)
since K ∈ I+

K\{q} ∩ I
−
Kc

≥ P (K) · P
(
I+
K\{q} ∩ I

−
{q}

)
≥ P (K) · P (L \ {q}) since L \ {q} ∈ I+

K\{q} ∩ I
−
{q}

> 0,

where the last inequality follows from the fact that K ∈ K and L \ {q} ∈
K.

Combining Lemmas 3.10 and 3.11 leads immediately to the following
theorem.

Theorem 3.12. Let Q be a set of items and P be a probability distribution
on P(Q), where P (∅) > 0 and P (Q) > 0. Suppose also that P satisfies the
property of positive knowledge correlation. Then, K = KP satisfies [LC] and
[FC].

Our next two results show that 3(a) and 3(b) imply closure under union
and closure under intersection, respectively.

Lemma 3.13. Let Q be a set of items and P be a probability distribution
on P(Q), where P (∅) > 0 and P (Q) > 0. Assume that 3(a) holds. Then,
the knowledge structure K = KP is closed under union.

Proof. Let K,L ⊆ Q with P (K) > 0 and P (L) > 0. Note that, by assump-
tion, the inequality holds if K ∪L = Q. Furthermore, it also holds if K ⊆ L,
as we have P (K ∪L) = P (L) > 0, or if L ⊆ K, since P (K ∪L) = P (K) > 0.
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Assuming that K ∪ L 6= Q, K 6⊆ L, and L 6⊆ K, let K \ L = {r1, r2, ..., rm}.
We have

P (K ∪ L) = P
(
I+
{r1} ∩ I

+
K∪L\{r1} ∩ I

−
(K∪L)c

)
= P

(
I+
K∪L\{r1}

∣∣∣ I+
{r1}, I

−
(K∪L)c

)
· P
(
I+
{r1} ∩ I

−
(K∪L)c

)
.

Note that P
(
I+
{r1} ∩ I

−
(K∪L)c

)
> 0 since K ∈ I+

{r1} ∩ I
−
(K∪L)c ; as such, the

above conditional probability is well-defined. Next, since we’re assuming
K ∪ L 6= Q, we have (K ∪ L)c 6= ∅; thus, we can apply (3.23) to get

≥ P
(
I+
K∪L\{r1}

∣∣∣ I−(K∪L)c

)
· P
(
I+
{r1} ∩ I

−
(K∪L)c

)
=
P
(
I+
K∪L\{r1} ∩ I

−
(K∪L)c

)
P
(
I−(K∪L)c

) · P
(
I+
{r1} ∩ I

−
(K∪L)c

)

≥
P
(
I+
K∪L\{r1} ∩ I

−
(K∪L)c

)
P
(
I−(K∪L)c

) · P (K) since K ∈ I+
{r1} ∩ I

−
(K∪L)c

≥ P
(
I+
K∪L\{r1} ∩ I

−
(K∪L)c

)
· P (K).

Proceeding next with r2 ∈ K \ L, we have

= P
(
I+
{r2} ∩ I

+
K∪L\{r1,r2} ∩ I

−
(K∪L)c

)
· P (K)

= P
(
I+
K∪L\{r1,r2}

∣∣ I+
{r2}, I

−
(K∪L)c

)
· P
(
I+
{r2} ∩ I

−
(K∪L)c

)
· P (K).
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Note that K ∈ I+
{r2}∩I

−
(K∪L)c , which means P

(
I+
{r2} ∩ I

−
(K∪L)c

)
> 0. Applying

(3.23) once again gives

≥ P
(
I+
K∪L\{r1,r2}

∣∣ I−(K∪L)c

)
· P
(
I+
{r2} ∩ I

−
(K∪L)c

)
· P (K)

=
P
(
I+
K∪L\{r1,r2} ∩ I

−
(K∪L)c

)
P
(
I−(K∪L)c

) · P
(
I+
{r2} ∩ I

−
(K∪L)c

)
· P (K)

≥
P
(
I+
K∪L\{r1,r2} ∩ I

−
(K∪L)c

)
P
(
I−(K∪L)c

) · P (K)2 since K ∈ I+
{r2} ∩ I

−
(K∪L)c

≥ P
(
I+
K∪L\{r1,r2} ∩ I

−
(K∪L)c

)
· P (K)2.

Proceeding similarly one at a time for r3 through rm, we have

P (K ∪ L) ≥ P
(
I+
K∪L\{r1,r2,..,rm} ∩ I

−
(K∪L)c

)
· P (K)m

= P
(
I+
L ∩ I

−
(K∪L)c

)
· P (K)m

≥ P (L) · P (K)m since L ∈ I+
L ∩ I

−
(K∪L)c

> 0.

Therefore, K is closed under union.

Lemma 3.14. Let Q be a set of items and P be a probability distribution
on P(Q), where P (∅) > 0 and P (Q) > 0. Assume that 3(b) holds. Then,
the knowledge structure K = KP is closed under intersection.

Proof. Let K,L ⊆ Q with P (K) > 0 and P (L) > 0. We will show that
P (K ∩ L) > 0, which implies that K is intersection-closed. Note that, by
assumption, the inequality holds if K ∩ L = ∅. Furthermore, it also holds if
K ⊆ L, as we have P (K ∩ L) = P (K) > 0, or if L ⊆ K, since P (K ∩ L) =
P (L) > 0. Assuming K ∩ L 6= ∅, K 6⊆ L, and L 6⊆ K, let K \ L =
{q1, q2, · · · , qn}. We have

P (K ∩ L) = P
(
I+
K∩L ∩ I

−
{q1} ∩ I

−
((K∩L)∪{q1})c

)
= P

(
I−((K∩L)∪{q1})c

∣∣∣ I+
K∩L, I

−
{q1}

)
· P
(
I+
K∩L ∩ I

−
{q1}

)
.

25



Note that P
(
I+
K∩L ∩ I

−
{q1}

)
> 0 since L ∈ I+

K∩L ∩ I
−
{q1}; as such, the above

conditional probability is well-defined. Since we’re assuming K ∩ L 6= ∅, we
can apply (3.24) to get

≥ P
(
I−((K∩L)∪{q1})c

∣∣∣ I+
K∩L

)
· P
(
I+
K∩L ∩ I

−
{q1}

)
=
P
(
I+
K∩L ∩ I

−
((K∩L)∪{q1})c

)
P
(
I+
K∩L

) · P
(
I+
K∩L ∩ I

−
{q1}

)

≥
P
(
I+
K∩L ∩ I

−
((K∩L)∪{q1})c

)
P
(
I+
K∩L

) · P (L) since L ∈ I+
K∩L ∩ I

−
{q1}

≥ P
(
I+
K∩L ∩ I

−
((K∩L)∪{q1})c

)
· P (L).

Note that L ∈ I+
K∩L ∩ I

−
{q2}, which means P

(
I+
K∩L ∩ I

−
{q2}

)
> 0. Thus,

proceeding similarly for q2 ∈ K \ L, by applying (3.24), we have

= P
(
I+
K∩L ∩ I

−
{q2} ∩ I

−
((K∩L)∪{q1,q2})c

)
· P (L)

= P
(
I−((K∩L)∪{q1,q2})c

∣∣I+
K∩L, I

−
{q2}

)
· P
(
I+
K∩L ∩ I

−
{q2}

)
· P (L)

≥ P
(
I−((K∩L)∪{q1,q2})c

∣∣I+
K∩L

)
· P
(
I+
K∩L ∩ I

−
{q2}

)
· P (L) by (3.24)

=
P
(
I+
K∩L ∩ I

−
((K∩L)∪{q1,q2})c

)
P
(
I+
K∩L

) · P
(
I+
K∩L ∩ I

−
{q2}

)
· P (L)

≥ P
(
I+
K∩L ∩ I

−
((K∩L)∪{q1,q2})c

)
· P
(
I+
K∩L ∩ I

−
{q2}

)
· P (L)

≥ P
(
I+
K∩L ∩ I

−
((K∩L)∪{q1,q2})c

)
· P (L)2,

where the last line follows from the fact that L ∈ I+
K∩L ∩ I

−
{q2}. Proceeding

similarly one at a time for q3 through qn, we get

P (K ∩ L) ≥ P
(
I+
K∩L ∩ I

−
((K∩L)∪{q1,q2,..,qn})c

)
· P (L)n

= P
(
I+
K∩L ∩ I

−
Kc

)
· P (L)n

≥ P (K) · P (L)n since K ∈ I+
K∩L ∩ I

−
Kc

> 0.

Therefore, K is closed under intersection.
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Combining Lemmas 3.13 and 3.14, it follows immediately that a knowl-
edge structure satisfying the property of positive knowledge correlation is
necessarily closed under both union and intersection.

Theorem 3.15. Let Q be a set of items and P be a probability distribution
on P(Q), where P (∅) > 0 and P (Q) > 0. Suppose also that P satisfies the
property of positive knowledge correlation. Then, K = KP is closed under
both union and intersection.

Now that we have shown 3(a) and 3(b) imply a knowledge structure
is closed under union and intersection, respectively, a natural question is
whether these conditions are satisfied for any knowledge structure that is
closed under both union and intersection. Continuing with Example 3.8, we
next show that this is not the case.

Example 3.8 (continuing from p. 17). Notice that the knowledge structure is
closed under both union and intersection for any value of α in (0, 1

8
). However,

consider that the inequalities in (3.19) are satisfied for 0 < α ≤ 1
16

, but they
do not hold for 1

16
< α < 1

8
; thus, for the latter set of values condition 3(a)

does not hold, while the knowledge structure is closed under both union and
intersection. Similarly, the inequalities in (3.21) are satisfied for 1

16
≤ α < 1

8
,

but they do not hold for 0 < α < 1
16

; as such, in the latter case condition
3(b) does not hold, even though the knowledge structure is once again closed
under both union and intersection.

Another question is whether the property of positive knowledge correla-
tion can be reformulated without the inclusion of I−C ; that is, is it possible to
get the same results by formulating the property in terms of only knowing
items, without mentioning the items that are not known? Our next example
shows that this is not possible.

Example 3.16. For Q = {x, y, z} consider the following probability distri-
bution P on P(Q).

P ({x}) = P ({y}) =
1

10
P ({z}) = 0

P ({x, z}) =
1

10
P ({x, y}) = P ({y, z}) = 0

P ({x, y, z}) =
3

5
P (∅) =

1

10
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Note that the knowledge structure K = KP is closed under intersection, but
it is not closed under union. Based on the probability distribution above, we
can compute the following probabilities.

P
(
I+
{y}

)
= P

(
I+
{z}

)
=

7

10

P
(
I+
{x}

)
=

8

10

P
(
I+
{x}

∣∣∣ I+
{y}

)
= P

(
I+
{y}

∣∣∣ I+
{z}

)
= P

(
I+
{z}

∣∣∣ I+
{y}

)
=

6

7

P
(
I+
{y}

∣∣∣ I+
{x}

)
=

3

4

P
(
I+
{x}

∣∣∣ I+
{z}

)
= 1

P
(
I+
{z}

∣∣∣ I+
{x}

)
=

7

8

P
(
I+
{y}

∣∣∣ I+
{x,z}

)
=

6

7

P
(
I+
{x}

∣∣∣ I+
{y,z}

)
= P

(
I+
{z}

∣∣∣ I+
{x,y}

)
= 1

Observe that for any permutation σ of the items in {x, y, z} we have

P
(
I+
{σ(1)}

∣∣∣ I+
{σ(2)}

)
≥ P

(
I+
{σ(1)}

)
and

P
(
I+
{σ(1)}

∣∣∣ I+
{σ(2),σ(3)}

)
≥ P

(
I+
{σ(1)}

∣∣∣ I+
{σ(2)}

)
.

However, note that from the state probabilities we can compute

P
(
I+
{y}

∣∣∣ I+
{x}, I

−
{z}

)
= 0 �

1

3
= P

(
I+
{y}

∣∣∣ I−{z}) ,
in violation of (3.8). Thus, since K is not union-closed, it follows that formu-
lating (3.8) solely in terms of what is known is not enough to guarantee the
resulting knowledge structure is closed under both union and intersection.

3.2. The FKG Inequality and Positive Knowledge Correlation

In Section 3.1 we proved several results that followed when a knowl-
edge structure and its associated probability distribution satisfy the prop-
erty of positive knowledge correlation. In this next part we work in the other
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direction—that is, assuming we have a probability distribution on a knowl-
edge structure, when can we conclude the property of positive knowledge
correlation is satisfied? To answer this question, we need to make use of the
Fortuin-Kasteleyn-Ginibre (FKG) inequality (Fortuin et al., 1971). In order
to apply the FKG inequality, we first need the following definition.

Definition 3.17. Let Γ be a partially ordered set. Given two elements
x, y ∈ Γ, suppose the least upper bound exists in Γ; in such a case, this
least upper bound, denoted by x∨ y, is called the join of x and y. Similarly,
suppose the greatest lower bound of x and y exists in Γ; then, this greatest
lower bound, denoted by x ∧ y, is called the meet of x and y. The set Γ is
a lattice if the join and meet exist for every x, y ∈ Γ. Furthermore, Γ is a
distributive lattice if the join and meet operations distribute; that is, for all
x, y, z ∈ Γ we have

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) . (3.27)

We are now ready to state the FKG inequality.

Theorem 3.18 (FKG inequality). Let Γ be a finite distributive lattice. Let
m be a nonnegative function on Γ satisfying the following condition.

(A) For all x and y in Γ,

m(x ∨ y)m(x ∧ y) ≥ m(x)m(y). (3.28)

Let f and g both be monotonically increasing (or, both be monotonically
decreasing) functions on Γ. The following positive correlation inequality
then holds:(∑

x∈Γ

f(x)g(x)m(x)

)(∑
x∈Γ

m(x)

)
≥

(∑
x∈Γ

f(x)m(x)

)(∑
x∈Γ

g(x)m(x)

)
.

(3.29)
The inequality becomes negatively correlated—i.e., the inequality sign is
flipped—if one of f and g is monotonically increasing and the other is mono-
tonically decreasing.
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In order to apply the FKG inequality, we let Γ = K, where K is a knowl-
edge structure defined on a set of items Q. Furthermore, we assume that
K is closed under both union and intersection—in this case, the join and
meet operations are then represented by set union and set intersection, re-
spectively. Finally, we assume that m is a nonnegative function on P(Q), the
power set of the items in Q. Using these assumptions, our next result shows
a connection between (3.28) and positive knowledge correlation.

Theorem 3.19. Let Q be a set of items and P be a probability distribution
on P(Q), where P (∅) > 0, P (Q) > 0, and K = KP is closed under both
union and intersection. Suppose also that for every K,L ∈ K we have

P (K ∪ L)P (K ∩ L) ≥ P (K)P (L). (3.30)

Then, P satisfies the property of positive knowledge correlation.

Before proving Theorem 3.19, we first prove the result for a more specific
and technical set of conditions.

Lemma 3.20. Let Q be a set of items and P be a probability distribution
on P(Q), where P (∅) > 0, P (Q) > 0, and K = KP is closed under both
union and intersection. Suppose also that for every B,C ⊆ Q and K,L ∈ K

we have

P
(
{K ∪ L} ∩ I+

B ∩ I
−
C

)
· P
(
{K ∩ L} ∩ I+

B ∩ I
−
C

)
≥

P
(
{K} ∩ I+

B ∩ I
−
C

)
· P
(
{L} ∩ I+

B ∩ I
−
C

)
. (3.31)

Then, P satisfies the property of positive knowledge correlation.

Proof. Let q, r ∈ Q, with B and C defined as above. For any K ∈ K define

m(K) :=

{
P (K) if K ∈ I+

B ∩ I
−
C ,

0 if K /∈ I+
B ∩ I

−
C .

(3.32)

For a set family F, let 1F represent the indicator function for F; that is,
for any A ⊆ Q we have 1F(A) = 1 if A ∈ F and 1F(A) = 0 otherwise. We
need to show that (3.8) holds. Note that, since I+

{q} is an upper set, 1I+{q}
is a monotonically increasing function for any q ∈ Q. Next, observe that
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by combining (3.31) and (3.32) it follows that (3.28) is satisfied. Setting
f(K) = 1I+{q}

(K) and g(K) = 1I+{r}
(K), from (3.29) we then get

(∑
K∈K

1I+{q}
(K) · 1I+{r}(K) ·m(K)

)(∑
K∈K

m(K)

)
≥(∑

K∈K

1I+{q}
(K) ·m(K)

)(∑
K∈K

1I+{r}
(K) ·m(K)

)
. (3.33)

Starting with the first term of (3.33) we have∑
K∈K

1I+{q}
(K) · 1I+{r}(K) ·m(K) =

∑
K∈I+{q}∩I

+
{r}

m(K)

=
∑

K∈I+{q}∩I
+
{r}∩I

+
B∩I

−
C

P (K) by (3.32)

= P
(
I+
{q} ∩ I

+
{r} ∩ I

+
B ∩ I

−
C

)
. (3.34)

Using similar arguments, we can also show that∑
K∈K

1I+{q}
(K) ·m(K) =

∑
K∈I+{q}

m(K)

=
∑

K∈I+{q}∩I
+
B∩I

−
C

P (K) by (3.32)

= P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
(3.35)

and ∑
K∈K

1I+{r}
(K) ·m(K) =

∑
K∈I+{r}

m(K)

=
∑

K∈I+{r}∩I
+
B∩I

−
C

P (K) by (3.32)

= P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
. (3.36)
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Finally, applying (3.32) once again we have∑
K∈K

m(K) =
∑

K∈I+B∩I
−
C

P (K)

= P
(
I+
B ∩ I

−
C

)
. (3.37)

Combining (3.34)–(3.37) with (3.33) results in the inequality

P
(
I+
{q} ∩ I

+
{r} ∩ I

+
B ∩ I

−
C

)
· P
(
I+
B ∩ I

−
C

)
≥

P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
· P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
.

Assuming P
(
I+
{r} ∩ I

+
B ∩ I

−
C

)
> 0, we can rearrange the terms to get

P
(
I+
{q} ∩ I

+
{r} ∩ I

+
B ∩ I

−
C

)
P
(
I+
{r} ∩ I

+
B ∩ I

−
C

) ≥
P
(
I+
{q} ∩ I

+
B ∩ I

−
C

)
P
(
I+
B ∩ I

−
C

)
⇐⇒ P

(
I+
{q}

∣∣∣ I+
B∪{r}, I

−
C

)
≥ P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
.

Thus, (3.8) holds, as required.

We now prove Theorem 3.19.

Proof of Theorem 3.19. Let B,C ⊆ Q and K,L ∈ K. We need to show
that (3.31) holds. To start, suppose that at least one of K or L is not in
{I+

B ∩ I
−
C }. In such a case, the right-hand side of (3.31) contains at least one

probability computed over an empty set family, and by (3.6) it follows that
such a probability is equal to zero—thus, the right-hand side equals zero and
the inequality holds.

Next, consider the case when K,L ∈ {I+
B ∩ I

−
C }. As such, both K and

L contain all the items in B and none of the items in C. Let b ∈ B. Since
b ∈ K and b ∈ L, it follows that b ∈ K ∪ L and b ∈ K ∩ L; as this holds for
any b ∈ B, we have both K ∪L ∈ I+

B and K ∩L ∈ I+
B . Next, let c ∈ C. Since

c /∈ K and c /∈ L, it follows that c /∈ K ∪ L and c /∈ K ∩ L; as this holds
for any c ∈ C, we have both K ∪ L ∈ I−C and K ∩ L ∈ I−C . Combining the
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results in this paragraph, we have now shown that both K ∪ L and K ∩ L
are contained in {I+

B ∩ I
−
C }. We then have

P
(
{K ∪ L} ∩ I+

B ∩ I
−
C

)
· P
(
{K ∩ L} ∩ I+

B ∩ I
−
C

)
= P (K ∪ L) · P (K ∩ L)

≥ P (K) · P (L) by (3.30)

= P
(
{K} ∩ I+

B ∩ I
−
C

)
· P
(
{L} ∩ I+

B ∩ I
−
C

)
.

We have now shown that (3.31) holds in general. Applying Lemma 3.20,
it follows that P satisfies the property of positive knowledge correlation.

Based on Theorem 3.19, we next give an example that satisfies the prop-
erty of positive knowledge correlation.

Example 3.21. Let K be a knowledge structure on Q that is closed under
both union and intersection, and let P be a uniform probability distribution
on the states in K; that is, we have

P (K) :=


1

|K|
if K ∈ K,

0 if K /∈ K.

(3.38)

We need to show that (3.30) holds. Let K and L be states in K. Since K

is closed under both union and intersection, it follows that both K ∪ L and
K ∩ L are states in K. We then have

P (K) = P (L) = P (K ∪ L) = P (K ∩ L) =
1

|K|
. (3.39)

Based on these values, we can then see that (3.30) trivially holds—thus, by
Theorem 3.19 it follows that P satisfies the property of positive knowledge
correlation.

Our next result shows that, under the assumptions of Theorem 3.19,
positive knowledge correlation and the conditions given by (3.30) are actually
equivalent.

Theorem 3.22. Let Q be a set of items and P be a probability distribution
on P(Q), where P (∅) > 0 and P (Q) > 0. Furthermore, assume that P
satisfies the property of positive knowledge correlation. Then, for any K,L ∈
K, we have

P (K ∪ L)P (K ∩ L) ≥ P (K)P (L). (3.40)
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Proof. We show the claimed result by proving the contrapositive holds. That
is, if (3.40) fails to hold, we show that P does not satisfy the property
of positive knowledge correlation. Thus, we start by assuming there exist
K,L ∈ K such that

P (K ∪ L)P (K ∩ L) < P (K)P (L). (3.41)

We next rewrite the terms as the following probabilities.

P (K ∪ L) = P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

+
L\K ∩ I

+
K\L

)
> 0

P (K ∩ L) = P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

−
L\K ∩ I

−
K\L

)
> 0

P (K) = P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

−
L\K ∩ I

+
K\L

)
> 0

P (L) = P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

+
L\K ∩ I

−
K\L

)
> 0

Note that since (3.41) is a strict inequality, it implies K 6⊆ L, L 6⊆ K,
P (K) > 0, and P (L) > 0. We can then derive the following conditional
probabilities, which are well-defined as either K or L is contained in each set
family represented in the denominators.

P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

+
L\K ∩ I

+
K\L

)
P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

+
K\L

) = P
(
I+
L\K

∣∣∣ I+
K , I

−
(K∪L)c

)
P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

−
L\K ∩ I

−
K\L

)
P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

−
K\L

) = P
(
I−L\K

∣∣∣ I+
K∩L, I

−
Lc

)
P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

−
L\K ∩ I

+
K\L

)
P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

+
K\L

) = P
(
I−L\K

∣∣∣ I+
K , I

−
(K∪L)c

)
P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

+
L\K ∩ I

−
K\L

)
P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

−
K\L

) = P
(
I+
L\K

∣∣∣ I+
K∩L, I

−
Lc

)
Using these conditional probabilities and dividing each side of (3.41) by

P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

+
K\L

)
· P
(
I+
K∩L ∩ I

−
(K∪L)c ∩ I

−
K\L

)
,

34



we can rewrite (3.41) as

P
(
I+
L\K

∣∣∣ I+
K , I

−
(K∪L)c

)
· P
(
I−L\K

∣∣∣ I+
K∩L, I

−
Lc

)
<

P
(
I−L\K

∣∣∣ I+
K , I

−
(K∪L)c

)
· P
(
I+
L\K

∣∣∣ I+
K∩L, I

−
Lc

)
. (3.42)

From (3.42) we can see that at least one of the following (strict) inequalities
must hold.

P
(
I+
L\K

∣∣∣ I+
K , I

−
(K∪L)c

)
< P

(
I+
L\K

∣∣∣ I+
K∩L, I

−
Lc

)
(3.43)

P
(
I−L\K

∣∣∣ I+
K∩L, I

−
Lc

)
< P

(
I−L\K

∣∣∣ I+
K , I

−
(K∪L)c

)
(3.44)

Note that both of these inequalities are in violation of the property of posi-
tive knowledge correlation—as such, the probability distribution P does not
satisfy positive knowledge correlation, and the claimed result follows.

3.3. Empirical Analysis of Positive Knowledge Correlation

In this section we investigate the validity of the property of positive knowl-
edge correlation using data from the ALEKS system. ALEKS, which stands
for “Assessment and LEarning in Knowledge Spaces,” is an artificially intel-
ligent adaptive learning and assessment system that is based on KST (Mc-
Graw Hill ALEKS, 2022). For this analysis, we use a data set composed of
3,301,368 ALEKS assessments taken over a period of roughly 10 years, be-
ginning in 2011. These assessments are from the ALEKS Placement, Prepa-
ration, and Learning (ALEKS PPL) product, where each assessment func-
tions as a placement test for an incoming college or university student. The
ALEKS PPL assessment uses a knowledge space consisting of 314 items that
cover material from elementary mathematics to precalculus.

Recall that (3.8) has the form given below.

P
(
I+
{q}

∣∣∣ I+
B∪{r}, I

−
C

)
≥ P

(
I+
{q}

∣∣∣ I+
B , I

−
C

)
In order to estimate the above conditional probabilities, we make use of
a specific feature of the ALEKS assessment. Each ALEKS assessment—
ALEKS PPL included—asks an extra problem that is chosen uniformly at
random from the available items, and the student’s response to the extra
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problem does not have any effect on the outcome of the assessment or the
selecting of the subsequent questions to ask. Instead, the data from the extra
problems are typically used to evaluate the performance of the assessment
and make further improvements. For this analysis, we use the correct answer
rates on the extra problems to estimate the conditional probabilities in (3.8).

Next, in order to properly account for the conditional events in (3.8)
when computing our estimates, we need to make use of the item classifica-
tions coming from the ALEKS assessment. Specifically, each ALEKS PPL
assessment partitions the 314 items into the following three categories.

– items that are most likely in the student’s knowledge state (in-state)

– items that are most likely not in the student’s knowledge state (out-of-
state)

– the remaining items (uncertain)

For this analysis, we use the in-state and out-of-state classifications on the
items when conditioning on r, B, and C in (3.8). To estimate the right-
hand-side of (3.8), we find all the assessments in which the items in B are
all classified in-state and all the items in C are classified as out-of-state; for
these assessments, we then compute the rate at which q is answered correctly
when it appears as the extra problem. Next, to estimate the left-hand-side
of (3.8), we find all the assessments in which the items in B ∪ {r} are all
classified in-state, while the items in C are all classified as out-of-state; for
these assessments, we again compute the rate at which q is answered correctly
when it appears as the extra problem.

Before moving on, a comment must be made on our procedure for esti-
mating the conditional probabilities. The reader may wonder why we have
chosen to use the correct answer rate on the extra problem as our estimate,
rather than the proportion of times that q is classified as in-state. The reason
for this is that simultaneously using the assessment classification information
for q, B, and C can, in many cases, heavily bias the estimates. For example,
suppose that, due to the specifics of the knowledge space, q is a prerequisite
of an item b ∈ B; specifically, q is in any state that contains b. In such a

case, an estimate of P
(
I+
{q}

∣∣∣ I+
B , I

−
C

)
that uses the in-state information on

q would always return a value of one; that is, since q is a prerequisite of an
item in B, whenever all the items in B are classified as in-state, q would by
necessity also be classified as in-state. Thus, by computing the conditional
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Figure 1: Relative frequency histogram of P
(
I+{q}

)
, as estimated by the extra problem

correct answer rate for each of the 314 items. On average, 10,490 extra problems are used
to compute each estimate.

probability estimates based on the correct answer rate to the extra problem,
we are hoping to adjust for biases such as these. While it is true that, due
to careless errors, a correct answer rate can be different from the probability
of actually knowing an item, we submit that the correct answer rate is a
reasonable proxy for this probability in the scenario under consideration.

Now, let (Q,K) be the knowledge space used in the ALEKS PPL as-
sessment. For each q ∈ Q, we use the overall correct answer rate for q
to estimate P (I+

{q}); the results are shown in Figure 1, where we display a
relative frequency histogram of the correct answer rate for each item. The
correct answer rates are computed with data from the responses to an av-
erage of 10,490 extra problems; the mean and median values of the correct
answer rates are 0.52 and 0.50, respectively, with the values ranging from
a minimum of 0.02 to a maximum of 0.98. For our first evaluation of the
positive knowledge correlation property, we can compare the overall correct
answer rates to those computed conditional on whether another item is clas-
sified as in-state or out-of-state. Formally, for any q, r ∈ Q, with q 6= r, we
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compute the “positive” difference

P
(
I+
{q}

∣∣∣ I+
{r}

)
− P

(
I+
{q}

)
(3.45)

whenever the conditional probability can be estimated with at least 5,000
data points. Specifically, we find example assessments where r is classified as
in-state and q is asked as the extra problem; based on the correct answer rate

to q on these assessments, we have our estimate of P
(
I+
{q}

∣∣∣ I+
{r}

)
. Similarly,

we also compute the “negative” difference

P
(
I+
{q}

∣∣∣ I−{r})− P (I+
{q}

)
(3.46)

whenever the conditional probability can be estimated with at least 5,000
data points. Specifically, we find example assessments where r is classified as
out-of-state and q is asked as the extra problem; based on the correct answer

rate to q on these assessments, we have our estimate of P
(
I+
{q}

∣∣∣ I−{r}).

Note that as (3.45) and (3.46) can be computed for each ordered pair of
distinct items in the domain, there are a total of 314× 313 = 98, 282 condi-
tional probabilities for us to consider in each of the two cases. Using all the
assessments in our data set, we find 46,972 positive conditional probability
estimates with sample sizes of 5,000 or more, and none of these are smaller

than the corresponding unconditional probability P
(
I+
{q}

)
. Then, there are

34,837 negative examples with sample sizes of 5,000 or more, and none of
these have a value larger than the corresponding unconditional probability

P
(
I+
{q}

)
. The resulting relative frequency histograms for these estimates of

(3.45) and (3.46) are shown in Figure 2.
Our next set of results looks at slightly more complex conditional prob-

abilities. For q, r, s ∈ Q we are interested in estimating the conditional

probability P
(
I+
{q}

∣∣∣ I+
{r}, I

−
{s}

)
; that is, the probability of knowing q given

that r is known and s is not known. To estimate this quantity, we look at
all assessments where r is classified as in-state, s is classified as out-of-state,
and q is asked as the extra problem. For our “positive” case we compare
this estimate to the probability of knowing q given that s is not known, as
follows:

P
(
I+
{q}

∣∣∣ I+
{r}, I

−
{s}

)
− P

(
I+
{q}

∣∣∣ I−{s}) . (3.47)

The above difference is computed whenever we have 5,000 data points for each
conditional probability estimate. Similarly, we can compute the “negative”
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Figure 2: Comparison of the item base rates and conditional probabilities. The top
graph shows a relative frequency histogram of the estimates for (3.45), while the bot-
tom graph shows a relative frequency histogram of the estimates for (3.46). All of the
46,972+34,837=81,809 estimates are consistent with the property of positive knowledge
correlation.
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difference by comparing to the probability of knowing q, given that r is
known:

P
(
I+
{q}

∣∣∣ I+
{r}, I

−
{s}

)
− P

(
I+
{q}

∣∣∣ I+
{r}

)
. (3.48)

As before, the above difference is computed whenever we have 5,000 data
points for each conditional probability estimate.

As (3.47) and (3.48) can be computed for each ordered triple of distinct
items in the domain, there are a total of 314× 313× 312 = 30, 663, 984 con-
ditional probability estimates to consider. The results are shown in Figure 3.
In this example there are 2,249,553 triples of items q, r, s ∈ Q for which we

have at least 5,000 data points to estimate P
(
I+
{q}

∣∣∣ I+
{r}, I

−
{s}

)
. Comparing

these values to the estimates for P
(
I+
{q}

∣∣∣ I+
{r}

)
, there are only 45 examples

for which the difference (3.47) is negative, with all the values being greater
than -0.0002; thus, the violations of (3.8) are very minor, both in number
and size. Then, for the negative data points, there are only 75 for which the
difference (3.48) is positive, with all of the values being less than 0.0003; thus,
as before, the violations of positive knowledge correlation in these examples
are again very minor both in number and size. Combining the results from
all of these figures, overall the examples we’ve looked at are consistent with
the property of positive knowledge correlation—the few specific cases that
violated the property did so very minimally, suggesting that these violations
may be due simply to uncertainty in our estimates.

4. Positive Correlation and Adaptive Assessments

In the previous section we looked in detail at the property of positive
knowledge correlation. However, for all of our previous analyses we assumed
that the probability distribution on the states in K was fixed and unchang-
ing. In this section we look at a related, but distinct, problem. Specifically,
we assume that the probability distribution on the states in K is changing
over time—in particular, this is the behavior that results from an adaptive
assessment algorithm that updates the distribution on K with each response
from the student taking the assessment. After a brief background on how
such an updating algorithm works, we introduce and analyze the concept of
a positively correlated updating rule.
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Figure 3: The top graph shows a relative frequency histogram of the estimates for (3.47),
where the minimum value is greater than −0.0002 and only 45 of the 2,249,553 data
points have negative values. The bottom graph shows a relative frequency histogram of
the estimates for (3.48), where the maximum value is less than 0.0003 and only 75 of the
2,249,553 data points have positive values.
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4.1. Updating Rule for an Adaptive Assessment

We next discuss a few concepts related to probabilistically modeling and
assessing knowledge in KST. This material is adapted mainly from Chapters
11 and 13 in Falmagne and Doignon (2011). We begin with the definition of
a probabilistic knowledge structure.

Definition 4.1. A probabilistic knowledge structure is a triple (Q,K, P ) that
satisfies the following.

(i) (Q,K) is a finite knowledge structure with ∪K ∈ K.

(ii) The mapping P : K→ [0, 1] is a probability distribution on K; that is,
for any K ∈ K we have P (K) ≥ 0 and, additionally,

∑
K∈K P (K) = 1.

Note that the above definition has a subtle difference from our previous
assumptions in Section 3. In particular, Definition 4.1 assumes a knowledge
structure, K, exists, and that the probability distribution is then a function
of the states in K. However, in Section 3 our typical assumption was that
the knowledge structure was induced by the probability distribution, which
implies that P (K) > 0 for any K ∈ K; as such, Definition 4.1 is slightly
more general, as P (K) = 0 is allowed even if K ∈ K.

Next, we need to define the concept of an updating rule.

Definition 4.2. For n = 1, 2, . . . , let (qn, rn) represent a sequence of ques-
tions and responses, respectively, that appear during an adaptive assessment.
That is, qn ∈ Q is the item asked at time n, while rn ∈ {0, 1} represents the
student’s response to qn; note that rn = 1 represents a correct answer to qn,
while rn = 0 signifies a wrong answer. Assume that (Q,K, Pn) is a probabilis-
tic knowledge structure for each n. Then, an updating rule u is a function
satisfying the equation

Pn+1
a.s.
= u(rn, qn, Pn). (4.1)

For a state K ∈ K and item q ∈ Q, let 1K be the indicator function for
K, where 1K(q) is one if q ∈ K and zero otherwise. Then, it’s additionally
assumed that u satisfies the following:

Pn+1(K) = uK(rn, qn, Pn)

{
> Pn(K) if 1K(qn) = rn,

< Pn(K) if 1K(qn) 6= rn.
(4.2)
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In words, an updating rule increases the probability of (a) any state that
contains a correctly answered item, or (b) any state that doesn’t contain
an incorrectly answered item. Conversely, the updating rule decreases the
probability of (c) any state that contains an incorrectly answered item, or
(d) any state that doesn’t contain a correctly answered item.

4.2. Positively Correlated Updating Rule

We next introduce the concept of a positively correlated updating rule.

Definition 4.3. For each n = 1, 2, . . . , let (Q,K, Pn) be a probabilistic
knowledge structure. Then, Pn(I+

{a}) is the probability of knowing item a ∈ Q
at question n. A positively correlated updating rule satisfies the following
two inequalities:

rn = 1 =⇒ Pn+1

(
I+
{a}

)
≥ Pn

(
I+
{a}

)
,∀a ∈ Q,

rn = 0 =⇒ Pn+1

(
I+
{a}

)
≤ Pn

(
I+
{a}

)
,∀a ∈ Q. (4.3)

So, given a correct answer a positively correlated updating rule does not
decrease the probability of any individual item; conversely, given an incorrect
answer, it does not increase the probability of any individual item. Our goal
is to develop a set of sufficient conditions that guarantees an updating rule
is positively correlated.

For this analysis, we assume that we have a multiplicative updating rule,
which we define as follows.

Definition 4.4. Let Pn be a probability distribution on a knowledge struc-
ture K at question n. Consider the real-valued parameters βin > 1, i ∈ {0, 1},
with each βin having an associated set family U i

n ⊆ K. In the event of a cor-
rect answer to qn (i.e., rn = 1), the set U1

n consists of all the states where the
update β1

n is applied. Then, given an incorrect answer to qn (i.e., rn = 0), the
set U0

n consists of all the states where the update β0
n is applied. The updated

probabilities are computed as follows:

Pn+1(K) = uK(rn, qn, Pn) :=


βin · Pn(K)

βin · Pn(U i
n) + 1− Pn(U i

n)
if K ∈ U i

n,

Pn(K)

βin · Pn(U i
n) + 1− Pn(U i

n)
if K /∈ U i

n.

(4.4)
We call this a multiplicative updating rule.
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Our next result shows that for any state K ∈ U i
n, the updated probability

is non-decreasing.

Lemma 4.5. Let u be a multiplicative updating rule with U i
n and βin defined

as in Definition 4.4. Suppose that rn = i. Then, Pn+1(K) ≥ Pn(K) for
K ∈ U i

n and Pn+1(K) ≤ Pn(K) for K ∈ K \ U i
n.

Proof. For K ∈ U i
n we have

Pn+1(K) =
βin · Pn(K)

βin · Pn(U i
n) + 1− Pn(U i

n)

=
Pn(K)

Pn(U i
n) + 1−Pn(U i

n)
βi
n

≥ Pn(K),

where the last line follows from the fact that for βin > 1 we have

Pn(U i
n) +

1− Pn(U i
n)

βin
≤ 1.

Next, for K /∈ U i
n we have

Pn+1(K) =
Pn(K)

βin · Pn(U i
n) + 1− Pn(U i

n)

≤ Pn(K),

where the last line follows from the fact that for βin > 1 we have

βin · Pn(U i
n) + 1− Pn(U i

n) ≥ 1.

For our subsequent results, we once again need to make use of the FKG
inequality. As in Section 3.2, we let Γ = K, where K is a knowledge structure
defined on a set of items Q, and we assume that K is closed under both union
and intersection. Finally, we assume that m = P is a probability distribution
on P(Q). In order to apply the FKG inequality, for any K,L ∈ K we need
to show that the following holds after a multiplicative update.

P (K ∪ L)P (K ∩ L) ≥ P (K)P (L) (4.5)

The next lemma formulates a set of sufficient conditions that guarantees the
inequality in (4.5) holds.
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Lemma 4.6. Let u be a multiplicative updating rule with U i
n defined as in

Definition 4.4, and assume that (4.5) currently holds for Pn and all A,B ∈ K.
Then, for βin > 1 (4.5) continues to hold for Pn+1 if U i

n satisfies the following
conditions.

(a) A,B ∈ U i
n =⇒ A ∪B,A ∩B ∈ U i

n

(b) A ∈ U i
n =⇒ ∀B ∈ K, at least one of A ∪B or A ∩B must be in U i

n

Proof. Let A,B ∈ K, and assume that (4.5) holds for Pn. Assume both A
and B are in U i

n. Then, by (a) we know A ∪B and A ∩B are both in U i
n as

well; thus, we have

Pn+1(A ∪B)Pn+1(A ∩B) =
βin · Pn(A ∪B)

βin · Pn(U i
n) + 1− Pn(U i

n)

βin · P (A ∩B)

βin · Pn(U i
n) + 1− Pn(U i

n)

≥ βin · Pn(A)

βin · Pn(U i
n) + 1− Pn(U i

n)

βin · Pn(B)

βin · Pn(U i
n) + 1− Pn(U i

n)

(by (4.5))

= Pn+1(A)Pn+1(B).

Next, without loss of generality assume that only A is in U i
n. By (b) we know

at least one of A ∪B or A ∩B is in U i
n. Thus, we have

Pn+1(A ∪B)Pn+1(A ∩B) ≥ βin
Pn(A ∪B)

βin · Pn(U i
n) + 1− Pn(U i

n)

Pn(A ∩B)

βin · Pn(U i
n) + 1− Pn(U i

n)

(Since at least one of A ∪B or A ∩B is in U i
n)

≥ βin
Pn(A)

βin · Pn(U i
n) + 1− Pn(U i

n)

Pn(B)

βin · Pn(U i
n) + 1− Pn(U i

n)

(by (4.5))

= Pn+1(A)Pn+1(B),

where the last line follows from the fact that only A is in U i
n.

Finally, assume that neither A nor B is contained in U i
n. Note that for

an arbitrary K ∈ K, combining (4.4) with the fact that βin > 1 gives

Pn+1(K) ≥ Pn(K)

βin · Pn(U i
n) + 1− Pn(U i

n)
.
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We then have

Pn+1(A ∪B)Pn+1(A ∩B) ≥ Pn(A ∪B)

βin · Pn(U i
n) + 1− Pn(U i

n)

Pn(A ∩B)

βin · Pn(U i
n) + 1− Pn(U i

n)

≥ Pn(A)

βin · Pn(U i
n) + 1− Pn(U i

n)

Pn(B)

βin · Pn(U i
n) + 1− Pn(U i

n)

(by (4.5))

= Pn+1(A)Pn+1(B),

where the last line follows from the fact that we’re assuming A and B are
not in U i

n. Thus, we have now shown that (4.5) holds for Pn+1.

One specific updating rule that satisfies (a) and (b) from Lemma 4.6 is
the following. In the event of a correct response to an item q, set U1

n = I+
{q};

otherwise, if q is answered incorrectly set U0
n = I−{q}. The intuition is that if

q is answered correctly we want to increase the probabilities of all the states
that contain q; conversely, if q is answered incorrectly we want to increase
the probabilities of all the states that do not contain q. Such an updating
rule is discussed in Section 13.4 of Falmagne and Doignon (2011). More
generally, the conditions (a) and (b) are satisfied if, for example, every set
in U i

n contains all the items from some set R. Or, as another example, the
conditions are satisfied if every set in U i

n contains no items from some set R.
We next identify another set of conditions that must be satisfied in order

to have a positively correlated updating rule. To do this, we first need to
prove the following lemma.

Lemma 4.7. Let u be a multiplicative updating rule with U i
n defined as in

Definition 4.4, and suppose that rn = i. Then, for any q ∈ Q we have the
following.

Pn+1

(
I+
{q}

∣∣∣U i
n

)
= Pn

(
I+
{q}

∣∣∣U i
n

)
(4.6)

Pn+1

(
I+
{q}

∣∣∣ (U i
n

)c)
= Pn

(
I+
{q}

∣∣∣ (U i
n

)c)
(4.7)

That is, the probability of knowing an item, conditioned on either U i
n or

(U i
n)

c
, is not affected by the update.
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Proof. We first prove (4.6).

Pn+1

(
I+
{q}

∣∣∣U i
n

)
=
Pn+1

(
I+
{q} ∩ U i

n

)
Pn+1 (U i

n)

=

∑
K∈{I+{q}∩U i

n}
βinPn (K)∑

K∈U i
n
βinPn (K)

=

∑
K∈{I+{q}∩U i

n}
Pn (K)∑

K∈U i
n
Pn (K)

=
Pn

(
I+
{q} ∩ U i

n

)
Pn (U i

n)

= Pn

(
I+
{q}

∣∣∣U i
n

)
(4.8)

Using a similar argument, we next prove (4.7).

Pn+1

(
I+
{q}

∣∣∣ (U i
n

)c)
=
Pn+1

(
I+
{q} ∩ (U i

n)
c
)

Pn+1

(
(U i

n)c
)

=

∑
K∈{I+{q}∩(U i

n)c} Pn (K)∑
K∈(U i

n)c Pn (K)

=
Pn

(
I+
{q} ∩ (U i

n)
c
)

Pn

(
(U i

n)c
)

= Pn

(
I+
{q}

∣∣∣ (U i
n

)c)
(4.9)

In this next theorem, we show that a positively correlated updating rule
is obtained by adding a final pair of assumptions on u.

Theorem 4.8. Let u be a multiplicative updating rule with U i
n and βin de-

fined as in Definition 4.4. Assume that u satisfies the conditions in Lemma 4.6.
Then, if 1U1

n
is monotonically increasing and 1U0

n
is monotonically decreasing,

it follows that u is a positively correlated updating rule.
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Proof. For u to be positively correlated, the difference Pn+1

(
I+
{a}

)
−Pn

(
I+
{a}

)
must satisfy the following two inequalities:

rn = 1 =⇒ Pn+1

(
I+
{a}

)
− Pn

(
I+
{a}

)
≥ 0,∀a ∈ Q, (4.10)

rn = 0 =⇒ Pn+1

(
I+
{a}

)
− Pn

(
I+
{a}

)
≤ 0,∀a ∈ Q. (4.11)

Using Lemma 4.7, we can rewrite Pn+1

(
I+
{a}

)
− Pn

(
I+
{a}

)
as follows.

Pn+1

(
I+
{a}

)
− Pn

(
I+
{a}

)
= Pn+1

(
I+
{a}

∣∣∣U i
n

)
Pn+1

(
U i
n

)
+ Pn+1

(
I+
{a}

∣∣∣ (U i
n

)c)
Pn+1

((
U i
n

)c)
− Pn

(
I+
{a}

∣∣∣U i
n

)
Pn
(
U i
n

)
− Pn

(
I+
{a}

∣∣∣ (U i
n

)c)
Pn

((
U i
n

)c)
= Pn+1

(
I+
{a}

∣∣∣U i
n

)
Pn+1

(
U i
n

)
+ Pn+1

(
I+
{a}

∣∣∣ (U i
n

)c)
Pn+1

((
U i
n

)c)
− Pn+1

(
I+
{a}

∣∣∣U i
n

)
Pn
(
U i
n

)
− Pn+1

(
I+
{a}

∣∣∣ (U i
n

)c)
Pn

((
U i
n

)c)
(by Lemma 4.7)

= Pn+1

(
I+
{a}

∣∣∣U i
n

) [
Pn+1

(
U i
n

)
− Pn

(
U i
n

)]
+ Pn+1

(
I+
{a}

∣∣∣ (U i
n

)c) [
Pn+1

((
U i
n

)c)− Pn((U i
n

)c)]
= Pn+1

(
I+
{a}

∣∣∣U i
n

) [
Pn+1

(
U i
n

)
− Pn

(
U i
n

)]
+ Pn+1

(
I+
{a}

∣∣∣ (U i
n

)c) [
1− Pn+1

(
U i
n

)
− 1 + Pn

(
U i
n

)]
=
[
Pn+1

(
I+
{a}

∣∣∣U i
n

)
− Pn+1

(
I+
{a}

∣∣∣ (U i
n

)c)] [
Pn+1

(
U i
n

)
− Pn

(
U i
n

)]
Note that Pn+1 (U i

n) − Pn (U i
n) is positive for βin > 1; this is easily seen

from the updating formula in (4.4). So, (4.10) holds when Pn+1

(
I+
{a}

∣∣∣U i
n

)
−

Pn+1

(
I+
{a}

∣∣∣ (U i
n)

c
)
≥ 0, while (4.11) holds if Pn+1

(
I+
{a}

∣∣∣U i
n

)
−Pn+1

(
I+
{a}

∣∣∣ (U i
n)

c
)
≤

0.
Suppose rn = 1. Since 1U1

n
is monotonically increasing, setting f = 1I+{a}

,
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g = 1U1
n
, and m = Pn+1, we can then apply the FKG inequality to get(∑

K∈K

1I+{a}
(K)1U1

n
(K)Pn+1(K)

)(∑
K∈K

Pn+1(K)

)
≥(∑

K∈K

1I+{a}
(K)Pn+1(K)

)(∑
K∈K

1U1
n
(K)Pn+1(K)

)
. (4.12)

Note that since
∑

K∈K Pn+1(K) = 1, the the left-hand side of (4.12) simplifies
to ∑

K∈I+{a}∩U1
n

Pn+1(K) = Pn+1

(
I+
{a} ∩ U

1
n

)
.

Then, since the right-hand side of (4.12) simplifies to( ∑
K∈I+{a}

Pn+1(K)
)(∑

K∈U1
n

Pn+1(K)
)

= Pn+1

(
I+
{a}

)
Pn+1

(
U1
n

)
,

after rearranging terms we have

Pn+1

(
I+
{a}

∣∣∣U1
n

)
=
Pn+1

(
I+
{a} ∩ U1

n

)
Pn+1 (U1

n)
≥ Pn+1

(
I+
{a}

)
. (4.13)

Next, since 1U1
n

is monotonically increasing, we have that 1(U1
n)c = 1 − 1U1

n

is monotonically decreasing. Applying the FKG inequality once again with
f = 1I+{a}

, g = 1(U1
n)c , and m = Pn+1 gives

(∑
K∈K

1I+{a}
(K)1(U1

n)c(K)Pn+1(K)

)(∑
K∈K

Pn+1(K)

)
≤(∑

K∈K

1I+{a}
(K)Pn+1(K)

)(∑
K∈K

1(U1
n)c(K)Pn+1(K)

)
. (4.14)

Simplifying terms and rearranging, we end up with

Pn+1

(
I+
{a}

∣∣∣ (U1
n

)c)
=
Pn+1

(
I+
{a} ∩ (U1

n)c
)

Pn+1

(
(U1

n)c
) ≤ Pn+1

(
I+
{a}

)
. (4.15)

49



Combining equations (4.13) and (4.15), we get

Pn+1

(
I+
{a}

∣∣∣U1
n

)
− Pn+1

(
I+
{a}

∣∣∣ (U1
n)c
)
≥ 0;

thus, as previously discussed, (4.10) holds.
Next, assume rn = 0. In this case 1U0

n
is monotonically decreasing, while

1(U0
n)c = 1 − 1U0

n
is monotonically increasing. Applying the FKG inequality

with f = 1I+{a}
, g = 1(U0

n)c , and m = Pn+1 gives

Pn+1

(
I+
{a}

∣∣∣ (U0
n

)c)
=
Pn+1

(
I+
{a} ∩ (U0

n)
c
)

Pn+1 ((U0
n)c)

≥ Pn+1

(
I+
{a}

)
, (4.16)

while using f = 1I+{a}
, g = 1U0

n
, and m = Pn+1 gives

Pn+1

(
I+
{a}

∣∣∣U0
n

)
=
Pn+1

(
I+
{a} ∩ U0

n

)
Pn+1 (U0

n)
≤ Pn+1

(
I+
{a}

)
. (4.17)

Combining equations (4.16) and (4.17), we have

Pn+1

(
I+
{a}

∣∣∣U0
n

)
− Pn+1

(
I+
{a}

∣∣∣ (U0
n

)c) ≤ 0,

from which (4.11) follows.

Based on Theorem 4.8, we get the following corollary, which shows the
connection between positive knowledge correlation and a positively correlated
updating rule.

Corollary 4.9. Let Q be a set of items and Pn be a probability distribu-
tion on P(Q), where Pn(∅) > 0 and Pn(Q) > 0. Assume that Pn satisfies
the property of positive knowledge correlation. Let u be a multiplicative
updating rule with U i

n and βin defined as in Definition 4.4, and assume that
(a) and (b) from Lemma 4.6 are satisfied. Then, if 1U1

n
is monotonically in-

creasing and 1U0
n

is monotonically decreasing, it follows that u is a positively
correlated updating rule.

Proof. Theorem 3.22 tells us that (4.5) holds for any K,L ∈ K. Thus, the
requirements for Lemma 4.6 are satisfied, and the result then follows from
Theorem 4.8.
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We next give an example of a positively correlated updating rule.

Example 4.10. Let K be a knowledge structure that is closed under both
union and intersection. Let P0 be defined as in (3.38); that is, P0 is a uniform
probability distribution on the states in K. As such, it’s easy to see that (4.5)
holds for P0. Let qn and rn represent the item asked and response given,
respectively, at time n, and define our updating rule as follows.

U1
n = I+

{qn}

U0
n = I−{qn}

That is, in the event of a correct answer to qn all the states containing qn are
updated; conversely, in the event of an incorrect answer all the states that
do not contain qn are updated.

We first note that it’s easily checked that (a) and (b) from Lemma 4.6 hold
for both I+

{qn} and I−{qn}. Next, observe that 1U1
n

= 1I+{qn}
is monotonically

increasing as a function on K, while 1U0
n

= 1I−{qn}
is monotonically decreasing

as a function on K. Thus, from Theorem 4.8 it follows that the updating
rule is positively correlated.

In the remainder of this section we look at the specific case of an updat-
ing rule on a non-ordinal learning space—i.e., a learning space that is not
closed under intersection. In doing so, we need to make use of the following
definition.

Definition 4.11. Let Q be a nonempty set and let F be a family of of subsets
of Q. For an item q ∈ Q, an atom at q is a minimal set—where ‘minimal’
is defined with respect to set inclusion—of F containing q. A set X ∈ F is
called an atom if it is an atom at q for some q ∈ Q.

The following theorem gives a useful property of atoms (for a proof see,
for example, Theorem 5.4.1 in Falmagne and Doignon, 2011).

Theorem 4.12. Let K be a well-graded knowledge space on a set of items
Q. Then, for any atom B at q, where q ∈ Q, the set B \ {q} is a state.

We are now ready to prove our next result, which shows that a non-
ordinal learning space is not a distributive lattice—as such, the techniques
developed in this section are not directly applicable to non-ordinal learning
spaces.
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Lemma 4.13. Any non-ordinal learning space L is not a distributive lattice.

Proof. Since L is a non-ordinal learning space, there exist Y, Z ∈ L such that
Y ∩ Z /∈ L. Note that if Y ∧ Z does not exist in L, then L is not a lattice;
thus, assume that Y ∧Z exists for each Y, Z ∈ L. We want to show that the
operations of meet (i.e., set union) and join do not distribute. To do this, we
need to find X ∈ L such that

X ∪ (Y ∧ Z) 6= (X ∪ Y ) ∧ (X ∪ Z). (4.18)

To that end, we first note that since Y ∩Z /∈ L, it must be the case that
Y ∧ Z ⊂ Y ∩ Z; thus, it follows that C = (Y ∩ Z) \ (Y ∧ Z) is non-empty.
We next claim that, without loss of generality, for at least one q ∈ C there
exists an atom A at q, such that A ∈ L and A ⊆ Y , but A * Z. We show
this by contradiction. That is, for each q ∈ C and for every atom Aq at q,
suppose we have Aq ∈ L, Aq ⊆ Y , and Aq ⊆ Z. This means that

Y ∩ Z = (Y ∧ Z) ∪

(⋃
q∈C

Aq

)
∈ L,

contradicting the assumption that Y ∩ Z /∈ L. Thus, we can now assume
that such an A exists.

Next, let X = A \ {q}; by Theorem 4.12, X ∈ L. Observe that q /∈
X ∪ (Y ∧ Z), as q ∈ C = (Y ∩ Z) \ (Y ∧ Z). Note, however, that since
q ∈ Z we have A = X ∪ {q} ⊆ X ∪ Z. Combined with the fact that A ⊆ Y ,
it follows that A ⊆ (X ∪ Y ) ∧ (X ∪ Z). Thus, we have now shown that
q ∈ (X ∪ Y ) ∧ (X ∪ Z) but q /∈ X ∪ (Y ∧ Z), from which (4.18) follows.

On the one hand, the preceding result shows that we cannot use the results
from this section to decide if an updating rule on a non-ordinal learning space
is positively correlated. On the other hand, it’s still possible that an updating
rule on a non-ordinal learning space can be positively correlated under certain
conditions. However, our next example shows that any such hypothetical set
of conditions must necessarily be different from the ones developed in this
section for distributive lattices.

Example 4.14. Consider the following family of sets defined onQ = {a, b, c}.

K = {∅, {a}, {b}, {a, b}, {b, c}, {a, c}, {a, b, c}}
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Note that this family is a learning space, as it can be checked that it sat-
isfies both [LS] and [LC]. However, as {a, c} ∩ {b, c} = {c} /∈ K, it is not
intersection-closed; thus, K is a non-ordinal learning space. Suppose P0 is a
uniform probability distribution on the states in K; that is, P0(K) = 1

7
for

each K ∈ K. We then have

P0(I+
b ) = P0({b}) + P0({a, b}) + P0({b, c}) + P0({a, b, c})

=
4

7

and

P0(I+
a ) = P0({a}) + P0({a, b}) + P0({a, c}) + P0({a, b, c})

=
4

7
.

Now, suppose we apply an updating rule with parameter β1
n = β1

1 > 1 and
U1
n = U1

1 = I+
a ; that is, assume that a is answered correctly. As we’ve seen

previously, such an updating rule is positively correlated on a knowledge
space closed under union and intersection. For any state K ∈ K such that
a ∈ K we have

P1(K) =
β1

1 · P0(K)

β1
1 · P0(I+

a ) + 1− P0(I+
a )

=

β1
1

7

β1
1 · 4

7
+ 3

7

=
β1

1

4β1
1 + 3

,

while for any state L ∈ K such that a /∈ L we get

P1(L) =
P0(L)

β1
1 · P0(I+

a ) + 1− P0(I+
a )

=
1
7

β1
1 · 4

7
+ 3

7

=
1

4β1
1 + 3

.
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We then have

P1(I+
b ) = P1({b}) + P1({a, b}) + P1({b, c}) + P1({a, b, c})

= 2 · 1

4β1
1 + 3

+ 2 · β1
1

4β1
1 + 3

=
2β1

1 + 2

4β1
1 + 3

, (4.19)

which is a strictly decreasing function of β1
1 . Since (4.19) equals 4

7
for β1

1 = 1,
it follows that for any β1

1 > 1 we have

P1(I+
b ) <

4

7
= P0(I+

b ).

Thus, the updating rule is not positively correlated.

5. Discussion

In this work we introduced and examined multiple properties related to
the modeling of student knowledge in knowledge structures and knowledge
spaces. We began by looking at the implications of the forgetting consistency
condition [FC], a condition that was introduced with the goal of allowing the
forgetting of items in a knowledge structure to occur in a systematic way.
We showed that, when combined with the learning smoothness condition
[LS] from Cosyn and Uzun (2009), the resulting knowledge structure must
be closed under intersection. Next, we introduced the more general concept
of positive knowledge correlation. Under the intuition that knowing more
should not make it less likely a student knows a particular item, we derived
several implications resulting from this condition. In particular, a knowledge
structure that fulfills the conditions of positive knowledge correlation also
satisfies both learning consistency and forgetting consistency. Furthermore,
we showed that such a knowledge structure is necessarily closed under both
union and intersection, a strong and slightly surprising result.

To evaluate the concept of positive knowledge correlation, we described
the results of an empirical analysis using data from the ALEKS system. For a
few different scenarios we saw evidence supporting the concept, as there were
no substantial violations of positive knowledge correlation for the examples
we evaluated. Finally, we introduced and discussed the related concept of
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a positively correlated updating rule. In doing so, we derived results giving
sufficient conditions for an updating rule to satisfy this property.

One common theme that emerged from our investigation of these con-
cepts is the property of being closed under intersection. That is, being
intersection-closed is a consequence of both the forgetting consistency and
positive knowledge correlation properties. Additionally, we showed that,
in general, non-ordinal learning spaces—i.e., learning spaces that are not
intersection-closed—do not satisfy the conditions to have a positively corre-
lated updating rule. Thus, being intersection-closed is either a consequence
of, or closely related to, several of the properties discussed in this manuscript.

Previously, some algorithms for constructing knowledge spaces have at-
tempted to relax the condition of being closed under intersection, with the
goal of using the extra flexibility to reduce the size of the resulting knowledge
space (see, for example, Section 11 in Doignon and Falmagne, 2016). The
ultimate motivation is that, all else being equal, running an adaptive assess-
ment is easier on a smaller knowledge space. However, recent work has shown
that knowledge spaces can have extremely large numbers of states and, as
such, reducing the sizes of these spaces by even several orders of magnitude
might not have much of a practical effect Matayoshi (2022). Thus, taking all
of these results together, it could perhaps be argued that the benefits of mod-
eling student knowledge with intersection-closed knowledge spaces outweigh
the potential drawbacks.
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