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ABSTRACT
Many areas of educational research require the analysis of data that
have an inherent sequential or temporal ordering. In certain cases,
researchers are specifically interested in the transitions between
different states—or events—in these sequences, with the goal being
to understand the significance of these transitions; one notable
example is the study of affect dynamics, which aims to identify
important transitions between affective states. Unfortunately, a
recent study has revealed a statistical bias with several metrics used
to measure and compare these transitions, possibly causing these
metrics to return unexpected and inflated values. This issue then
causes extra difficulties when interpreting the results of these tran-
sition metrics. Building on this previous work, in this study we look
in more detail at the specific mechanisms that are responsible for
the bias with these metrics. After giving a theoretical explanation
for the issue, we present an alternative procedure that attempts
to address the problem with the use of marginal models. We then
analyze the effectiveness of this procedure, both by running simula-
tions and by applying it to actual student data. The results indicate
that the marginal model procedure seemingly compensates for the
bias observed in other transition metrics, thus resulting in more
accurate estimates of the significance of transitions between states.
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• Mathematics of computing → Time series analysis; • Ap-
plied computing→ E-learning.
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1 INTRODUCTION
As learning is a process that occurs over time, many areas of edu-
cation and learning analytics research require the analysis of data
that have a sequential or temporal ordering. Such analyses are
important, as our understanding of the learning process can be
greatly improved by leveraging the temporal features of these data
[17]. Additionally, properly analyzing the sequential properties of
educational data has been shown to help improve the performance
and accuracy of student models [2, 19]. When dealing with sequen-
tial data, researchers are often interested in the transitions that
occur between different states—or events—in these sequences. One
prominent example is in the area of affect dynamics, with the goal
being to identify transitions between affective states that are highly
significant [10, 15]. Other works have applied similar analyses to
logs of student actions in learning systems, in an attempt to under-
stand how students transition between different activities within
these sytems [6, 7].

Recently, the work in [8] evaluated several metrics commonly
used to analyze transitions within sequential data. In addition to
looking at the probability estimates of different transitions, the
study also evaluated techniques and transition metrics such as lag
sequential analysis [24] and the 𝐿 statistic [11]. Using numerical
simulations, the analysis revealed a subtle statisical bias that occurs
with these transition metrics, causing them to return unexpected
and inflated values. This bias then creates extra difficulties when
interpreting the values of the transition metrics, thus making it
harder to measure the significance of transitions; additionally, the
experiments in [8] showed that this issue is especially pronounced
in short sequences of transitions.

Motivated by these results, in this current work we look in more
detail at these issues. After first replicating the numerical experi-
ments from [8], we next give a theoretical analysis that attempts to
explain the underlying mechanisms causing the observed statistical
bias. Based on this explanation, we then outline a regression proce-
dure that measures the significance of transitions using a marginal
model approach. To evaluate the effectiveness of this procedure,
we apply it to the simulated data generated from our numerical
experiments, as well as to actual student data from studies of affect
dynamics.

2 TRANSITION METRICS AND STATISTICAL
BIAS

2.1 Transition Metric Simulations
Consider the case when transitions between states happen purely
at chance; that is, at all times in a sequence of states, the next
state is sampled uniformly at random from all possible states. In
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such a case, we want our transition metric to return a baseline
value that indicates the transitions are happening randomly and
are not influenced by the starting state. This is the setting for the
numerical experiments in [8], and we begin our current analysis
with a replication of their work. To that end, consider two possible
states,𝐴 and 𝐵. For each sequence length from 3 to 150, we generate
10,000 sequences of the given length by choosing between 𝐴 and 𝐵
at random; that is, we randomly choose between 𝐴 and 𝐵 with an
equal probability of 0.5. For each of these sequences we compute
the values of 𝑃 (𝐵 |𝐴) and 𝑃 (𝐴 |𝐴); the former is the probability of
transitioning to 𝐵, given that the starting state is 𝐴, while the latter
is the probability of transitioning to 𝐴, given that the starting state
is also 𝐴. Once we’ve computed these values for each sequence, we
then compute the average for each conditional probability over the
entire group of 10,000 sequences. Additionally, as another point of
comparison, as done in [8] we also include the values from the 𝐿
statistic, a popular transition metric used in the field of affective
dynamics. The 𝐿 statistic, which was originally introduced in [11],
is defined as follows.

Definition 1 (𝐿 statistic). For states 𝐴 and 𝐵, let 𝐴 → 𝐵 represent
transitions that start in state 𝐴 and end in state 𝐵. We then have

𝐿(𝐴 → 𝐵) := 𝑃 (𝐵 |𝐴) − 𝑃 (𝐵)
1 − 𝑃 (𝐵) , (2.1)

where 𝑃 (𝐵) is the overall probability of 𝐵 occurring as the next
state and 𝑃 (𝐵 |𝐴) is the conditional probability of transitioning to
𝐵, given that the starting state is 𝐴.

As with the conditional probabilities, we first compute the 𝐿

values individually for each sequence, and we then find the averages
of these values from the entire group of sequences. The values for
both the conditional probabilities and the 𝐿 statistic are shown in
Figure 1, and it’s worth noting that the results are consistent with
those from [8]. Regarding the conditional probabilities, while we
expect these to be close to 0.5, as we are choosing between 𝐴 and 𝐵
equally at random, we can see that the computed values are heavily
biased for the shortest sequences, with the bias then decreasing—
but not completely disappearing—as the sequence length grows. In
particular, the conditional probability values measuring transitions
from 𝐴 → 𝐴 are biased in the negative direction, while the values
for transitions of the form 𝐴 → 𝐵 show a bias in the positive
direction. Turning next to the 𝐿 statistic, we expect the values to
be close to zero as, again, the states are being chosen uniformly at
random. However, as with the conditional probabilities, we can see
that there is a bias that is especially pronounced for the shortest
sequences. For example, the maximum value of 𝐿(𝐴 → 𝐵) is just
over 0.4 and the minimum value of 𝐿(𝐴 → 𝐴) is just under −0.5,
and both of these values occur with the sequences of length 3.
Note that, while the bias is fairly minimal once we reach sequences
lengths of 40 or 50, obtaining this amount of data in a physical
classroom can be challenging and impractical.1

1As a simple example, consider a relatively small classroom containing 10 students.
If we assume that the observation window is 20 seconds—which is fairly standard in
affect dynamics research—it would take a single observer more than 2 hours to obtain
40 observations for each student, something that isn’t possible when a class period is
under an hour, as many are.
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Figure 1: Plot of 𝐿 values and conditional probabilities from
our replication of the simulations in [8]. The sequences are
generated by choosing states 𝐴 and 𝐵 equally at random.

2.2 Bias with Transition Metrics—Theoretical
Analysis

Now that we have replicated the experiments from [8], we next offer
a theoretical explanation for the biased values observed in these
experiments. The core of the issue can be traced to the conditional
probability estimates of 𝑃 (𝐵 |𝐴) and 𝑃 (𝐴 |𝐴). Our claim is that the
bias is an artifact of the averaging procedure used to estimate these
values across the different sequences, and that this bias is then
carried through to various transition metrics, such as 𝐿, that rely
on these estimates. We illustrate the issue using a simple example.
Consider the eight distinct sequences of length three consisting
only of the states 𝐴 or 𝐵, or both.

𝐴𝐴𝐴 𝐴𝐴𝐵 𝐴𝐵𝐴 𝐴𝐵𝐵 𝐵𝐴𝐴 𝐵𝐴𝐵 𝐵𝐵𝐴 𝐵𝐵𝐵

Now, as all transitions are equally likely in this set of sequences—
i.e., all transitions occur with the same frequency—we would expect
the computed estimates of 𝑃 (𝐵 |𝐴) and 𝑃 (𝐴 |𝐴) to each be 0.5. How-
ever, as shown by the values in the Unweighted column of Table 1
this is not the case. If we compute the probabilities individually
for each sequence, and we then compute the averages over all the
sequences, we obtain a value of 0.42 for 𝑃 (𝐴 |𝐴) and a value of 0.58
for 𝑃 (𝐵 |𝐴). In this example, the averaging procedure ignores the
number of transitions that occur within each sequence, which then
distorts the estimates. For example, the sequence 𝐴𝐴𝐴 contains
two transitions that start in 𝐴, while the sequence 𝐵𝐴𝐵 contains
only one; however, this discrepancy is ignored when computing
the values in the Unweighted column of Table 1. Based on these
results, this effect can be summarized, in some sense, by saying that
high values of 𝑃 (𝐴 | 𝐵) occur more frequently than high values of
𝑃 (𝐴 |𝐴) when the number of transitions within the sequences are
ignored.

Next, consider what happens if, instead of averaging the condi-
tional probabilities over the sequences, we compute the conditional
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probabilities by combining—or pooling—all of the data. That is,
rather than grouping the transitions by sequence, we simply com-
pute the rates of the transitions over the entire data set. Equivalently,
we can also think of this as computing a weighted average of the
conditional probabilities per sequence, where the weight is deter-
mined by the number of relevant transitions. For example, since
sequences such as 𝐴𝐴𝐴 and 𝐴𝐴𝐵 contain two transitions that start
in 𝐴, we assign these a weight of 2; on the other hand, sequences
such as 𝐴𝐵𝐵 and 𝐵𝐴𝐵 only contain one transition from 𝐴, so these
sequences are assigned a weight of 1. The results are shown in the
Weighted column of Table 1, where we can see that the weighted
conditional probabilities are both equal to 0.5, as desired.

3 REGRESSION PROCEDURE USING
MARGINAL MODELS

Based on the discussion in the previous section, the bias in the
conditional probability estimates can be removed by using the ex-
tra information that is lost when averaging the values for each
sequence. Thus, in what follows we describe a procedure that at-
tempts to retain this informationwith the use of a logistic regression
model. To begin, suppose we are interested in studying transitions
of the form 𝐴 → 𝐵. Furthermore, assume that there are no restric-
tions on transitions between states.2 To estimate the effect that
starting in 𝐴 has on transitions to 𝐵, we build a regression model
in which the response variable is binary, with a value of one if the
next state is equal to 𝐵, and a value of zero otherwise. Due to the
binary form of the response variable, we use the logit as our link
function. The sole predictor variable is another binary variable that
is one if the previous state is equal to 𝐴, and zero otherwise. Under
this formulation, a sequence of length 𝑛 generates 𝑛 − 1 data points.
The variables of the model are summarized as follows.

• 𝑦 = 𝑦𝑖𝑡 : one if 𝐵 is the next state for student 𝑖 at time 𝑡 ; zero
otherwise

• 𝑥 = 𝑥𝑖𝑡 : one if 𝐴 is the previous state for student 𝑖 at time 𝑡 ;
zero otherwise

Letting 𝜎 represent the standard logistic function, the regression
equation then has the form

𝑃 (𝑦𝑖𝑡 = 1 | 𝑥𝑖𝑡 ) = 𝜎 (𝛽0 + 𝛽1𝑥𝑖𝑡 ) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥𝑖𝑡 )
. (3.1)

In our analysis, we are interested in the coefficient 𝛽1 from (3.1).
The value of 𝛽1 gives an indication of how much starting in state
𝐴—in comparison to not starting in state 𝐴—influences the like-
lihood of transitioning to state 𝐵. A large positive value for this
coefficient would suggest that starting in 𝐴 increases the likelihood
of transitioning to 𝐵, in comparison to starting in a state that is not
𝐴. Analogously, a negative value for the coefficient might suggest
that starting in 𝐴 decreases the likelihood of transitioning to 𝐵,
in comparison to not starting in 𝐴. Additionally, a benefit of this
approach is that we can compare the probability estimates from the
regression for the two different values of the predictor variable—
zero or one—to get an additional measure of how large of an effect
the predictor variable has.

2In comparison, some studies specifically ignore self-transitions—i.e., data points
in which the same state appears consecutively—while in other situations certain
transitions may be impossible. We return to this topic in the discussion.

One complication with the above procedure is that we have
to deal with dependent—or correlated—data, as each sequence of
transitions contains multiple measurements from the same stu-
dent. Thus, when fitting the parameters for the logistic regression,
we need to properly account for the dependence between these re-
peated measurements. We can accomplish this by using a multilevel
model, where each individual student is considered a “group” or
“cluster”. Specifically, we use a marginal—or population averaged—
model based on generalized estimating equations (GEE) [13, 18].
Marginal models are able to handle correlated data, and as such they
are commonly used on data containing repeated measurements. We
choose a marginal model because of our focus on estimating the
average response over the entire population, rather than estimating
the effects on the individuals.3 In order to account for the correlated
data, we must specify the type of correlation structure for the data
within each group. In our situation with repeated measurements,
two common choices for the structure are an exchangeable correla-
tion and a first-order autoregressive correlation. The exchangeable
structure assumes that there is some common dependence between
all the data in a group, while the autoregressive structure assumes
that the dependence between the data in a group varies with time
[12, 13, 27]. While it may occasionally be difficult to precisely deter-
mine the correct choice of correlation structure, it’s worth noting
that the parameter estimates are statistically consistent even if this
structure is misspecified; in such a case, only the efficiency of these
estimates is compromised [12, 18].

Since the estimating equations used in GEEmodels are not neces-
sarily likelihood based, we are unable to use the standard Akaike In-
formation Criterion (AIC) [1] to compare different models. Instead,
we can compare the fits of different models using the Quasi-AIC
(QIC) score [23]; among other things, using the QIC score can help
us determine the best choice of correlation structure [12, 23]. Then,
to analyze the effect of our predictor variable, we can evaluate 𝛽1
using standard techniques such as the Wald test for statistical sig-
nificance [12]. Another advantage of this approach is that it directly
compares the cases when (a) the starting state is 𝐴 and (b) the start-
ing state is not 𝐴. In comparison, the 𝐿 statistic compares the cases
when the starting state is 𝐴 to the overall behavior, regardless of
the starting state. The drawback to the latter approach is that if
𝐴 is very common and its occurrence dominates the sequence of
states, it’s possible that the values of 𝑃 (𝐵) and 𝑃 (𝐵 |𝐴) will be very
close simply because 𝐴 is almost always the starting state.

4 EXPERIMENTS ON SIMULATED DATA
In this section we apply the marginal model approach to simulated
data using the statsmodels [25] Python library.4 We begin by
applying the model to the data from our replication of the work
in [8]; recall that, for 𝑛 = 3, 4, . . . , 150, we generate 10,000 different
sequences, each of length 𝑛, where each state in each sequence is
chosen uniformly at random from 𝐴 or 𝐵. The first set of results for
the transitions 𝐴 → 𝐴 and 𝐴 → 𝐵 are shown in Figure 2a. There,
we plot the unweighted conditional probability values, computed

3If the focus is on the individuals, one possible approach is to estimate the subject-
specific parameters by using a mixed-effects model with a random intercept for each
student.
4A Python module for running these numerical experiments is available at https:
//github.com/jmatayoshi/sequence-analysis.

https://github.com/jmatayoshi/sequence-analysis
https://github.com/jmatayoshi/sequence-analysis


LAK21, April 12–16, 2021, Irvine, CA, USA Jeffrey Matayoshi and Shamya Karumbaiah

Table 1: Computed weighted conditional probabilities.

AAA AAB ABA ABB BAA BAB BBA BBB Mean
Unweighted Weighted

𝑃 (𝐴 |𝐴) 1 0.5 0 0 1 0 – – 0.42 0.5
𝑃 (𝐵 |𝐴) 0 0.5 1 1 0 1 – – 0.58 0.5
Weight 2 2 1 1 1 1 0 0

directly from the raw data and averaged over each set of 10,000
trials, along with the estimated probabilities from the marginal
models; in the latter case—i.e., the dashed green line and solid red
line—these estimates correspond to the model predictions when
𝑥 = 1. We can see that, for both transition pairs 𝐴 → 𝐴 and 𝐴 → 𝐵,
the estimates from the marginal models are all closely centered
around 0.5; this is in sharp contrast to the computed conditional
probability values, which exhibit the previously discussed bias.

Next, in Figure 2b we compare the 𝐿 values with the values
of 𝛽1, the coefficient of our single predictor variable. As shown
previously, the 𝐿 values for 𝐴 → 𝐵 have a positive bias, with a
maximum value of just over 0.4, while the 𝐿 values for𝐴 → 𝐴 have
a negative bias, with a minimum value of just below −0.5. However,
in all cases the 𝛽1 values are closely centered around zero, as is
preferred. We should also mention that, for this analysis, we use
the exchangeable correlation structure for the marginal models. As
the states are chosen with equal probability from either 𝐴 or 𝐵,
there is actually no underlying dependence in the data; thus, it is
instructive that, even with the incorrect correlation structure, the
resulting parameter estimates are accurate.

To investigate the situation when the transition states occur
with different frequencies—or base rates—we run one additional
set of simulations. For these simulations, we assume there are four
possible states:𝐴,𝐵,𝐶 , and𝐷 . To generate our sequences, we sample
randomly according to the following distribution: 𝐴 is chosen with
probability 0.6, 𝐵 is chosen with probability 0.2, and 𝐶 and 𝐷 are
each chosen with probability 0.1. Then, for 𝑛 = 3, 4, . . . , 150, we
generate 10,000 different sequences, each of length 𝑛, according to
this probability distribution on the states. The results are shown
in Figure 3, where we plot the computed conditional probabilities,
along with the estimated probabilities from the marginal models.
As before, we can see that the raw conditional probabilities are
biased for the shorter sequences. In comparison, the estimates from
the marginal models are centered closely around the true values.

5 APPLICATION TO REAL STUDENT DATA
5.1 Affect Dynamics Data Sets
Our next analysis evaluates the performance of the marginal model
procedure on actual student data. Specifically, we apply the tech-
nique to two different data sets consisting of affect sequences. Our
first data set comes from students working in the Physics Play-
ground learning environment [26]. The Baker-Rodrigo-Ocumpaugh
Monitoring Protocol (BROMP) [22] was used to record the affective
states of 179 high school students working within this environment
[3]. For our purposes, we are interested in the states flow (FLO),
confusion (CON), frustration (FRU), and boredom (BOR); the re-
maining states have all been merged into the dummy state NA. The

recorded sequences for these students are relatively long, with the
mean and median lengths being 135.2 and 126.0, respectively, with
a standard deviation of 68.9; the minimum sequence length is 47,
while the maximum is 272.

In contrast to the Physics Playground data, our second data set
has very different characteristics. Namely, the sequences are much
shorter, which makes for an interesting analysis, as we can see how
the biases that have been observed in the simulated data affect the
results from actual student data. This particular data set consists
of sequences from 782 students working in the ASSISTments plat-
form [14], with BROMP again being used to record the student
affective states [9]; as before, we focus on the states flow (FLO),
confusion (CON), frustration (FRU), and boredom (BOR), with any
remaining states being merged into the dummy state NA. The mean
and median lengths of the sequences in this data set are 9.6 and
9.0, respectively, with a standard deviation of 5.2. The minimum
sequence length is 3, while the maximum is 37.

5.2 Experimental Results
Based on the experiments from [8], as well as our results in Sec-
tion 4, we expect the relatively long sequence lengths in the Physics
Playground data to minimize the bias in the 𝐿 statistic values. In
comparison, we expect to see some evidence of this bias in the AS-
SISTments data, due to the very short sequence lengths. The results
from applying the marginal model, as well as the corresponding 𝐿
values, are shown in Table 2. For this analysis we use an exchange-
able correlation structure as, overall, it gives better performance in
comparison to the autoregressive structure.5

To adjust for the number of statistical tests being performed, we
have highlighted—in bold—the transition pairs that are statistically
significant after applying the Benjamini-Yekutieli procedure [5],
using an 𝛼 value of 0.05. While the Benjamini-Hochberg procedure
[4] has previously been used in the study of affect transitions [21],
it has only been proven to be valid if the statistical tests are in-
dependent of each other, or under certain dependency conditions
between the tests [5]. At the moment, we are not aware of any
studies or theoretical results that indicate our experimental setup
satisfies the requirements for applying the Benjamini-Hochberg
procedure. Thus, we instead use the Benjamini-Yekutieli procedure,
as it can be applied under arbitrary dependence conditions between
the statistical tests [5]; furthermore, in light of several recent stud-
ies that call into question some results from previous applications

5While many applications of the autoregressive structure deal with time scales on the
order of weeks, months, or years—e.g., epidemiological studies—the time scales for
our data sets are much smaller, on the order of minutes or hours. Thus, due to these
small time scales it’s plausible that the dependence in our data is relatively constant
over time, thereby making the exchangeable structure a better fit.
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Figure 2: Plots comparing (a) the unweighted conditional probability values and estimates from the marginal models, and (b)
the 𝐿 values and 𝛽1 coefficients from the marginal models. The sequences are generated by choosing states 𝐴 and 𝐵 equally at
random.
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Figure 3: Plot of unweighted conditional probability values
and the corresponding estimates from the marginal models.
The sequences are generated by choosing𝐴with probability
0.6, 𝐵 with probability 0.2, and𝐶 and 𝐷 each with probability
0.1.

of the 𝐿 statistic [8, 15, 16], we believe that controlling for false dis-
coveries with the more conservative Benjamini-Yekutieli procedure
is justified.6 Finally, note that the focus in this analysis is more on
comparing the marginal model and 𝐿 statistic results, and less about

6Motivated by these issues, we are in the middle of a more thorough evaluation of
the appropriateness of applying the Benjamini-Hochberg procedure when analyzing
sequential data.

identifying and interpreting significant affect transitions. To that
end, and to more faithfully simulate the results from an actual study
of affect transitions, we perform the Benjamini-Yekutieli correction
twice: once for all the marginal model values, and then separately
for all the 𝐿 statistic values.

Starting with the results from the Physics Playground data, it
appears that the longer sequences in this data set have mitigated
the effects of the bias with the 𝐿 values. That is, there are only
four transition pairs in the Physics Playground data for which the
sign of the 𝐿 statistic differs from the sign of the corresponding 𝛽1
value; in all of these examples, the associated 𝑝-values are relatively
high (0.16 or larger), indicating a lack of strong evidence that the
𝐿 and 𝛽1 values are different from zero. Furthermore, all of the
self-transitions values, for both 𝛽1 and 𝐿, are positive, with 𝑝 ≪
0.001 in all cases; note that while the bias with the 𝐿 statistic can
cause the importance of self-transitions to be underestimated, this
does not appear to be the case here, most likely because of the long
sequences of transitions.

Next, looking at the results for the ASSISTments data, there ap-
pears to be evidence of the bias in the 𝐿 values for these shorter
sequences. For example, recall that on short sequences of simu-
lated data, the 𝐿 statistic returns considerably lower than expected
values for self-transitions. Thus, it is instructive to see that in all
self-transition cases the 𝐿 values are negative and significantly
different from zero, while all the corresponding 𝛽1 values are posi-
tive and significantly different from zero. For comparison, of the
20 transitions between different states, there are only 4 transition
pairs that have negative 𝐿 values, none of which are significantly
different from zero; thus the positive bias when the 𝐿 statistic is
applied to transitions between different states seems to be a factor.
Furthermore, in all four of these cases with negative 𝐿 values, the
corresponding 𝛽1 values are also negative, possibly indicating that
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𝑝𝑟𝑒𝑣 𝑛𝑒𝑥𝑡

Physics Playground (longer sequences) ASSISTments (shorter sequences)
Marginal model 𝐿 statistic Marginal model 𝐿 statistic

𝛽1 𝑝-value 𝑥 = 0 𝑥 = 1 Mean 𝑝-value 𝛽1 𝑝-value 𝑥 = 0 𝑥 = 1 Mean 𝑝-value
FLO FLO 0.78 0.000 0.61 0.78 0.13 0.000 0.51 0.000 0.57 0.69 -0.09 0.000

CON -0.47 0.000 0.08 0.05 -0.01 0.000 -0.35 0.002 0.08 0.06 0.02 0.001
FRU -0.63 0.000 0.08 0.04 -0.01 0.000 -0.21 0.170 0.04 0.03 0.00 0.285
BOR -1.43 0.000 0.06 0.02 -0.02 0.000 -0.38 0.000 0.12 0.08 0.03 0.002
NA -0.37 0.000 0.15 0.11 -0.01 0.000 -0.61 0.000 0.22 0.13 -0.01 0.293

CON FLO -0.62 0.000 0.74 0.60 -0.71 0.00 -0.02 0.870 0.64 0.64 0.18 0.004
CON 1.33 0.000 0.05 0.18 0.09 0.000 0.77 0.000 0.06 0.12 -0.12 0.000
FRU 0.38 0.000 0.05 0.07 0.04 0.013 0.35 0.270 0.03 0.04 0.00 0.797
BOR -0.78 0.062 0.03 0.01 -0.02 0.014 -0.12 0.500 0.10 0.09 -0.02 0.339
NA -0.06 0.462 0.13 0.12 0.01 0.700 -0.02 0.878 0.16 0.16 0.03 0.394

FRU FLO -0.81 0.000 0.74 0.56 -0.42 0.00 -0.48 0.000 0.64 0.53 -0.07 0.401
CON 0.14 0.358 0.06 0.07 -0.00 0.983 0.48 0.068 0.06 0.10 0.04 0.163
FRU 1.60 0.000 0.04 0.18 0.07 0.000 -0.01 0.988 0.03 0.03 -0.10 0.000
BOR 0.38 0.034 0.03 0.04 0.03 0.018 0.52 0.011 0.10 0.15 0.05 0.233
NA -0.00 0.979 0.12 0.12 0.03 0.163 0.40 0.019 0.16 0.22 0.09 0.032

BOR FLO -1.28 0.000 0.74 0.44 -0.77 0.00 -0.28 0.003 0.65 0.58 0.18 0.001
CON -1.16 0.000 0.06 0.02 -0.05 0.000 -0.31 0.136 0.06 0.05 -0.01 0.314
FRU -0.17 0.279 0.05 0.04 0.01 0.390 0.31 0.229 0.03 0.04 0.01 0.280
BOR 2.96 0.000 0.02 0.27 0.23 0.000 0.73 0.000 0.09 0.16 -0.09 0.000
NA -0.25 0.126 0.13 0.10 -0.02 0.400 0.07 0.553 0.16 0.17 0.01 0.625

NA FLO -0.17 0.007 0.73 0.70 -0.01 0.804 -0.37 0.000 0.65 0.57 0.11 0.033
CON -0.25 0.003 0.06 0.05 -0.01 0.076 0.07 0.595 0.06 0.07 0.01 0.434
FRU -0.47 0.000 0.05 0.03 -0.02 0.010 -0.06 0.779 0.03 0.03 0.00 0.771
BOR -0.78 0.003 0.03 0.02 -0.02 0.001 -0.07 0.527 0.10 0.09 0.02 0.122
NA 0.65 0.000 0.11 0.20 0.06 0.000 0.79 0.000 0.14 0.26 -0.05 0.002

Table 2: Comparison of the marginal model and 𝐿 statistic results on the Physics Playground [3] and ASSISTments [9] data
sets. Bold values are statistically significant after applying the Benjamini-Yekutieli procedure with an 𝛼 value of 0.05. Note
that, when applying the Benjamini-Yekutieli procedure, we have applied it separately for the marginal model values and the
𝐿 values, in order to simulate the workflow in a typical study of affect transistions.

the negative relationships between the states are strong enough to
overcome the positive bias with the 𝐿 statistic. Thus, the overall
results on the ASSISTments data set are seemingly consistent with
the biases that appear in the experiments on simulated data.

6 DISCUSSION
As shown by the work in [8], several commonly used transition
metrics suffer from a bias that can inflate the significance of transi-
tion pairs. Motivated by these concerns, in this work we presented
the results from further investigation of these issues. We began
this analysis by replicating the numerical experiments in [8]. Next,
we presented a theoretical explanation for the underlying cause of
this bias, where we argued that it’s a consequence of the averag-
ing procedure commonly used in the computations of transition
metrics. Based on these results, we then outlined a procedure for
measuring the importance and significance of transition pairs. This
procedure takes the form of a logistic regression that estimates the
probability of transitioning to a state, depending on the occurence
of a previous state; the parameters for the regression were obtained
using marginal models. To show that this procedure does not suffer

from the bias inherent in other transition metrics, we examined its
effectiveness on both simulated and real data.

Note that the approach we outlined here is flexible, as it can be
applied to estimate and measure the effects of other relationships
beyond a single transition between states. For example, suppose
we are interested in whether starting in state 𝐴 has an influence
on the appearance of the sequence 𝐵𝐴𝐵 as the next three states. In
this case, we simply need to change our response variable to fit the
situation. Rather than defining the response variable based on the
next state, we simply change the definition so that it has a value of
one if the next three states are 𝐵𝐴𝐵, and a value of zero otherwise.
Or, perhaps we are still interested in a transition to a single state,
but rather than looking at the starting states individually, we would
rather directly compare their influence simultaneously. In this case,
we can use different indicator variables for the starting states, and
then compare the coefficients of these indicator variables to get a
relative ordering of significance of the different starting states.

Lastly, another potential application occurs in situations where
transitions between certain states are excluded, either by necessity
or by the preference of the researcher. For example, several recent
works have looked at cases when self-transitions—i.e., examples
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where the same state appears consecutively—are excluded from
sequences of student affect data, and these analyses have demon-
strated that issues arise when the 𝐿 statistic is applied in these
situations [8, 15, 16, 20]. At the moment, we believe that the re-
gression procedure described in this work can be adapted to these
cases, and as such we are currently in the process of evaluating the
validity of this approach.
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