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Abstract
Despite the prevalent use of predictive models in learning ana-
lytics, several studies have demonstrated that these models can
show disparate performance across different demographic groups
of students. The first step to audit for and mitigate bias is to ac-
curately estimate it. However, the current practice of identifying
and measuring group bias faces reliability issues. In this paper, we
use simulations and real-world data analysis to explore statistical
factors that impact the reliability of bias estimation and suggest
approaches to account for it. Our analysis revealed that small group
sizes lead to high variability in group bias estimation due to sam-
pling error – an issue that is more likely to impact students from
historically marginalized communities. We then suggest statistical
approaches, such as bootstrapping, to construct confidence inter-
vals for a more reliable estimation of group bias. Based on our
findings, we encourage future learning analytics research to ensure
sufficiently large group sizes, construct confidence intervals, use at
least two metrics, and move beyond the dichotomy of the presence
or absence of bias for a more comprehensive evaluation of group
bias.
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1 Introduction
Predictive models have been at the forefront of learning analytics
research and practice since its conception [34]. They are used for
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summative and formative assessment [43], predicting students’ aca-
demic success [47], recognizing which students are likely to drop
out of a course [13], and detecting disengagement in intelligent
tutoring systems [7], learning games [21], and collaborative learn-
ing [33]. These high-performing predictive models enable timely
interventions for students who need support.

However, the high performance of predictive models is not guar-
anteed for every student; in fact, predictive models often show
disparate performance across different demographic groups, partic-
ularly performingworse for students fromminoritized backgrounds.
For example, studies in learning analytics have demonstrated that
some predictive models are more likely to predict that students
from historically marginalized groups, such as Black, Hispanic, and
Native American students, will struggle or fail, even when they
have succeeded [20]. In other words, predictive learning analytics
are prone to group bias – that is, the models’ predictive performance
differs across different demographic groups of students.

Current approaches for estimating group bias in the field often
involve simply calculating the differences in model performance
across groups. For example, Zhang et al. [46] compared the perfor-
mance of self-regulated learning detectors across racial and ethnic
student groups and concluded that one of the detectors performed
“somewhat” better for Hispanic/Latinx students (AUC = 0.81) com-
pared to the white students (AUC = 0.80). But how do we determine
whether a difference of 0.01 is significant to declare the presence
or absence of bias? What is the threshold at which we should take
action?

Moreover, given that historically marginalized groups typically
have smaller sample sizes, the minority samples may not accurately
represent the true population. This increases the likelihood of sam-
pling error – the difference between the sample estimate and the
true population parameter [37] – for minority groups. For instance,
in Zhang et al. [46], there were only 18 Hispanic/Latinx students in
the dataset, raising questions on how accurate the reported AUC
of 0.81 and subsequently the positive bias of 0.01 is for the His-
panic/Latinx student group. Such sampling error occurs more often
than not in learning analytics research [23] for reasons such as
over-representation of Western, Educated, Industrialized, Rich, and
Democratic (WEIRD) populations [36] or convenience sampling of
undergraduate students [25].

Accurately estimating group bias in predictive models is crucial
not only for an accurate bias audit but also to prevent mitigation
efforts from further exacerbating bias for minority groups. Bias
audits in a predictive model refer to the systematic evaluation of
the model to identify potential group biases [35]. As discussed
above, if the estimation of group bias is unreliable, the auditing
process could result in spurious results. Hence, current mitigation
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approaches (e.g., [24]) cannot “mitigate” bias if the bias estimation
is in itself inaccurate. Furthermore, if the auditing process wrongly
concludes that the model is biased against the majority group due to
inaccurate estimation of model performance on the minority group
and attempts to “adjust” for bias, it could inadvertently introduce
bias against minority students.

We argue that some of the current practices in auditing for or
estimating group bias lack reliability. To the best of our knowledge,
there is limited research on the factors that contribute to unreliable
group bias estimation. To address this gap, our study examines two
research questions:

• RQ1:What statistical factors influence the reliable estimation
of bias in predictive learning analytics?

• RQ2: How can we make bias estimation more reliable with
further statistical evidence?

To answer RQ1, we use simulations to explore how factors un-
related to bias, such as sample size, class distribution, error rate,
and performance metric, affect the reliable estimation of group bias.
Specifically, we introduce an equal amount of classification error
to groups to demonstrate how group bias estimation can become
significantly unreliable. Our findings reveal that even when a clas-
sifier is designed to perform equally well for two groups, smaller
sample sizes can lead to either significantly inflated or deflated
bias estimations. Furthermore, we analyze real-world data from a
course dropout prediction model to answer RQ2. Specifically, we
use Newcombe’s Hybrid score method and bootstrapping to con-
struct confidence intervals. This demonstrates that using confidence
intervals can provide a more reliable estimate of group bias.

2 Background
2.1 What is Algorithmic Bias?
While the issue of algorithmic bias has gained prominence in recent
years, defining it remains a complex task due to the term “bias”
being used differently in statistics. Blodgett et al. [1] argue that
clarification is needed in several areas, particularly in how bias is
defined and what harms it can cause. In general, algorithmic bias
in predictive models refers to the disparate predictive performance
that algorithms may exhibit across different groups. Mitchell et
al. [30] define bias as a model’s unjustifiably differing predictive
performance across disadvantaged groups. Other studies also have
frequently used the term “unfair(ness)” in place of bias. For example,
Mehrabi et al. [29] define fairness as the absence of prejudice or
favoritism by a model toward certain individuals or groups based
on their attributes. Therefore, algorithmic bias in predictive models
is used interchangeably with group bias.

2.2 Current Methodological Approaches
Most of the algorithmic bias studies have focused on formalizing
fairness, ideally in order to mitigate bias in different stages of the
machine learning pipeline to achieve fairness. In general, these
studies are based on group fairness: group fairness (sometimes re-
ferred to as statistical fairness such as in [10]) asks for parity of
some statistical measure across all groups defined by a protected
demographic category such as race or gender. For instance, an algo-
rithm that predicts student dropout is deemed fair if the likelihood

of being dropped out is approximately the same across different
demographic groups (i.e., statistical parity, [16]). Other measures
include false positive and false negative rates (i.e., equalized odds,
[18]) and positive predictive value (similar to equalized calibration,
[9]). Group fairness notion is relatively simple because it does not
require making assumptions about the data.

2.3 Reliability Issues in Algorithmic Bias
Studies

In this section, we discuss several challenges related to reliable
estimation of algorithmic bias.

2.3.1 Small sample size. While algorithmic bias studies often focus
more on model training and optimization, a significant issue in the
field may also arise from the data collection process. Specifically,
sample sizes for certain groups, particularly historically underrepre-
sented populations, are often relatively small. This is largely due to
the historical distrust of institutions by many marginalized commu-
nities, rooted in past exploitation and coercion, such as in the the
Tuskegee Syphilis Study [2]. Additionally, socioeconomic factors
such as poverty and limited access to transportation, and social
stigma further complicate access to individuals from these groups
[41]. For example, Mcmaster & Cook [11] highlights that the infor-
mation about some intersectional groups is either not collected or
the sample sizes are insufficient for meaningful analysis.

Statistically, small sample sizes make it difficult to capture the full
variability within a population [32]. In other words, small sample
sizes increase sampling error – the difference between the sample
estimate and the true population parameter [37]. Varoquaux [44]
demonstrated that small sample sizes in predictive models lead to
large errors, compromising reliability of conclusions drawn from
these models. Additionally, small sample sizes reduce the statistical
power, which is the likelihood of detecting true effect. In other
words, small sample sizes make it harder to detect meaningful
effects [5, 42].

However, it is important to note that simply increasing data
collection from marginalized populations is not a cure-all. Collect-
ing more data could mean heightened surveillance and increased
targeted exposure to marginalized populations [22].

2.3.2 Lack of statistically reliable practice to estimate group bias.
Another significant challenge is the lack of reliable way to estimate
group bias in predictive models. Currently, one of the most common
approaches in learning analytics involves comparing the perfor-
mance of a predictive model across different groups. For example, to
assess whether a dropout prediction model is biased against black
students, researchers typically compare the AUC for black students
against that for white students or the overall population. Zambrano
et al. [45] compared AUC of bayesian knowledge tracing models
for intersectional student groups and concluded that their models
did not show any particular bias against any population. This is
because the maximum AUC difference within intersectional groups
was 0.033.

However, how can we determine if the AUC difference of 0.033 is
statistically significant enough to declare the presence or absence of
bias? As discussed above, small sample sizes increase the likelihood
of sampling error, ultimately compromising the reliability of the
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results from predictive models [44]. What if this 0.033 difference
resulted from the lack of reliability in the group bias estimation?
Without investigating factors that could influence the estimation of
group bias, such as sample size, it is challenging to draw definitive
conclusions from a single value.

3 Statistical Factors That May Affect The
Reliable Estimation of Group Bias

In this section, we synthesize empirical findings from existing liter-
ature to explore several factors that may influence the reliability
of group bias estimation. That is, we examine factors that in the-
ory do not introduce or mitigate group bias within the machine
learning pipelines (particularly during training), but may affect
its estimation. Specifically, we examine four factors: group sample
size, class distribution, error rate, and performance metric. Ideally,
these factors should not influence how biased an algorithm is. For
instance, while biased observations by data annotators may lead to
algorithmic bias through the training process, we would not expect
there to be higher bias just because a dataset has higher positive
labels overall. Likewise, while underrepresentation of a group may
contribute to bias, the sampling error could also deflate the bias
estimation (e.g., when the small group sample is not representative
of the variability in the group). Therefore, the factors we analyze
here are related to the reliable measurement of group bias, not the
biases introduced during data collection, training or deployment.

3.1 Group Sample Size
Group sample size refers to the number of instances that belong
to the group of interest, that is, it is the sample size of the group.
Since sample size is the number of instances included in the sample
which is drawn from a population, group sample size is the number
of the samples drawn from the population of a certain group.

Previous literature has emphasized that sufficient sample size is
required to accurately measure or detect true effects [27, 39]. Small
sample sizes are often inadequate to fully represent the variability
found in a population [32]. As sample size decreases, the likelihood
of the sample accurately estimating the true population decreases,
leading to increased sampling error. Sampling error refers to the
difference between the sample estimate and the population param-
eter [37]. This is because a small sample has a higher likelihood of
being an "unusual" sample of the true population. For instance, if
we sample only five students from a classroom, those five students
might have significantly different levels of self-regulation, moti-
vation, or prior learning backgrounds. Consequently, it becomes
challenging to draw conclusive decisions based on such a small,
and potentially un-representative sample.

This implies that small sample sizes can impact the reliable mea-
surement of group performance. Other things being equal, the
model performance for a group could be either overestimated or un-
derestimated if the sample size is very small. Furthermore, a small
sample size reduces the statistical power, which is the likelihood
that a hypothesis test can detect a difference (or relationship) when
a true difference (or relationship) exists in the population [42] 1.

1We also acknowledge that the group sample size can impact themodel training process
and lead to bias. That is, having a relatively small sample size for a certain demographic
group (e.g., female students have been underrepresented in STEM courses with only

This is particularly problematic when exploring algorithmic bias,
as historically minoritized groups often have fewer data points (i.e.,
smaller group size). For instance, in Zambrano et al. [45], there are
only four Native American students and 14 Native Hawaiian and
Pacific Islander students, compared to 831white students. Therefore,
minoritized groups with smaller group sizes are more likely to have
their performance less accurately measured.

3.2 Class Distribution
A class label in classification refers to the category or outcome
that a single data point belongs to. In binary classification, there
are two class labels: positive (e.g., dropout) and negative (e.g., not
dropout). Class distribution in binary classification hence refers to
the proportion of positive instances within the given data [17, 19].
If the dataset contains 𝑁 instances, and 𝑁𝑝 instances belong to the
positive class, the class distribution is 𝑁𝑝

𝑁
. A dataset is considered

imbalanced when the proportion of positive and negative instances
differs significantly.

In practice, much of the data is highly imbalanced, hence class
distribution is an important factor to consider in binary classifica-
tion settings. According to Dablain et al. [12], a lack of balance in
class distribution could make the classifiers more biased toward
majority class, as the algorithm’s parameters are heavily weighted
toward more frequently occurring examples during training. How-
ever, in this paper, we focus on how the class distribution impacts
the reliable estimation of group bias in the evaluation of the model
training, validation, and prediction at the deployment process, not
how the bias from class distribution is introduced in the training
process itself.

Jeni et al. [19] explored how class distribution impacts perfor-
mance measurement of facial recognition algorithms, particularly
with respect to performance metrics. They found that commonly
used metrics, such as Accuracy and Area Under the Precision-Recall
Curve, are affected by imbalanced class distribution, whereas the
Area Under the ROC curve (AUC) is the only exception. Similarly,
studies such as Chicco et al. [8] have shown that both the F1 score
and Accuracy can be overly inflated with imbalanced data. There-
fore, these findings all imply that class distribution could impact
the reliable estimation of a classifier’s performance, and this could
influence the identification and measurement of group bias.

3.3 Error Rate
The amount of classification error determines the classifier’s per-
formance on a group. We define this as error rate – the fraction of
instances that are misclassified. When the error rate differs across
groups, we consider it as an evidence for group bias. For instance,
an algorithm developed to predict UK students’ exam grades in
2020 assigned lower grades to students in public school compared
to those in private schools [40], and this becomes the evidence of
group bias in the algorithm.

We would expect a classifier’s performance to get worse for all
groups as the error rate increases (while the extent to which it
worsens is dependent on the metrics; see [26]). However, the error

20% of STEM MOOC learners being female [38]) can cause underrepresentation for
that demographic group to be insufficiently trained by the machine learning model.
While also relevant to studying bias, this is not the focus of this paper.
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rate in and of itself should not affect bias. That is, introducing the
same error rate would not lead to different classification perfor-
mance in different groups. Hence, as long as the same error rate is
applied to the groups, varying error rates should not influence bias
measurement.

3.4 Metric
Numerous performance metrics are used in machine learning and
learning analytics for binary classification, such as Accuracy, preci-
sion, recall, F1 score, and AUC. Furthermore, in algorithmic bias
literature, metrics that measure the error – such as False Positive
Rate (FPR) – are widely used to examine whether the error is equally
distributed across different demographic groups or not.

While the choice of metric does not affect the performance of
predictive models in and of itself, metrics do emphasize different
aspects of the model performance. For instance, let us compare the
formula for Precision and Recall:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
and 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
where 𝑇𝑃 refers to the True Positives, 𝐹𝑃 refers to the False

Positives, and 𝐹𝑁 refers to the False Negatives.
Precision measures how many of the instances predicted as posi-

tive are actually positive. High precisionmeans fewer false positives
– thus, precision is used when having high false positives are prob-
lematic. On the other hand, Recall measures how a model correctly
identifies positives among the actual positive instances. Unlike
precision, recall is used when missing positive cases (i.e., false nega-
tives) is costly. Generally, there is a tradeoff between precision and
recall – increasing one often leads to a decrease in the other. As in
this case, metrics prioritize different aspects of model performance.

In fact, Jeni et al. [19] shows that some performance metrics
(such as F1, which is a harmonic mean of Precision and Recall)
may reveal more about class distribution than they do about ac-
tual performance. Similarly, Kwegyir-Aggrey et al. [26] argues that
AUC is dependent on class distribution and misclassification er-
rors. Therefore, the decision to use which metrics could impact the
understanding of a classifier’s performance.

Furthermore, bias can be defined using these metrics. That is,
group bias can be defined by comparing the metrics of two groups.
For example, Kearns et al. [24] used equalizing False Positive Rate
between the overall population and a target group as a bias metric.
That is, the difference between the performance of the group and
that of the overall population serves as the evidence of differential
treatment by the classifier, which constitutes the definition of bias.

Factor Description

Group sample size Sample size of the group
Class distribution Positive label frequency
Error Classification error
Metric Evaluation metric for performance (e.g., FPR)
Table 1: Factors affecting reliable estimation of group bias.

4 Simulation
We investigate whether the statistical factors described in Section
3 influence the reliable estimation of group bias. In this simulation,

we introduce an equal amount of error to each group, so that the
simulated classifiers by design perform equally across the groups.
Therefore, if any performance differences between the groups are
observed, this may provide evidence of how these statistical factors
could inflate or deflate the estimation of group bias. In other words,
any observed performance differences would indicate a lack of
reliability in bias estimation.

While examining these factors in real-world datasets would be
ideal, it is often impractical to collect datasets that account for all
possible variables. For reasons described above, collecting data from
historically marginalized groups may be particularly challenging.
Therefore, in this section we conduct simulations varying these
factors to different degrees and investigate how they influence the
measurement of bias (note that we also conduct a real data analysis
in Section 5).

4.1 Simulation Setup
Using simulations, we address RQ1: What statistical factors influ-
ence the reliable estimation of bias in predictive learning analytics?
Specifically, to simulate the classification process, we assume two
datasets exist: 𝐴 : actual set (true labels) and 𝑃 : prediction set (pre-
dicted labels by classifier), where each set consists of 0 (negative)
and 1 (positive) instances. Note that the actual set and prediction
set have the same size. In this simulation, we examine two different
dataset sizes: (1)|𝐴| = |𝑃 | = 1000 (when total dataset size is 1,000),
and (2) |𝐴| = |𝑃 | = 10000 (when total dataset size is 10,000). Fur-
thermore, we assume that there exists a group of interest (hereafter
referred to as target), with all other groups in the dataset collec-
tively referred to as others. Note that target and others are mutually
exclusive in this simulation. While in practice target and others
may share attributes (i.e., intersectionality; for instance, ‘black’ and
‘black female’ groups), we assume mutual exclusivity in this paper
for simplicity. Therefore, an actual set𝐴 and a prediction set 𝑃 could
be defined as such:

𝐴 = 𝐴𝑇𝑎𝑟𝑔𝑒𝑡 ∪𝐴𝑂𝑡ℎ𝑒𝑟𝑠 and 𝑃 = 𝑃𝑇𝑎𝑟𝑔𝑒𝑡 ∪ 𝑃𝑂𝑡ℎ𝑒𝑟𝑠

And we introduce different factors discussed in Section 3.

4.1.1 Group sample size. We set the group sample size for each
group as follows.

• When total dataset size is 1,000 (|𝐴| = |𝑃 | = 1000): Target
group size (|𝐴𝑇𝑎𝑟𝑔𝑒𝑡 | = |𝑃𝑇𝑎𝑟𝑔𝑒𝑡 |) = 10, 20, 50, 100, 200, 300,
400 (The group size for Others = 1,000 - target group size).

• When total dataset size is 10,000(|𝐴| = |𝑃 | = 10000): Target
group size (|𝐴𝑇𝑎𝑟𝑔𝑒𝑡 | = |𝑃𝑇𝑎𝑟𝑔𝑒𝑡 |) = 10, 20, 50, 100, 500, 1,000,
2,000, 3,000, 4,000 (The group size for Others = 10,000 - target
group size).

We chose to start at 10 for 𝑡𝑎𝑟𝑔𝑒𝑡 group size as it is used as a
threshold to filter groups in some algorithmic bias studies (e.g.,
[45]).

4.1.2 Class distribution. In this simulation, class distribution refers
to the proportion of positive instances in the actual set 𝐴. Hence,
class distribution of each group is the proportion of positive in-
stances in 𝐴𝑇𝑎𝑟𝑔𝑒𝑡 or 𝐴𝑂𝑡ℎ𝑒𝑟𝑠 . We investigate five different class
distributions for each group: 0.05, 0.1, 0.2, 0.3, and 0.4. For instance,
when a target group’s class distribution is 0.1, that means that
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10% of 𝐴𝑇𝑎𝑟𝑔𝑒𝑡 consists of positive instances (i.e., 1). Based on the
class distribution, we can simulate the actual labels for𝐴𝑇𝑎𝑟𝑔𝑒𝑡 and
𝐴𝑂𝑡ℎ𝑒𝑟𝑠 .

4.1.3 Error rate. Error rate refers to the proportion of misclassified
instances. Hence, the error rate of a group is the proportion of
disagreement between its actual set values and prediction set values
(e.g., error rate of target group = disagreement between𝐴𝑇𝑎𝑟𝑔𝑒𝑡 and
𝑃𝑇𝑎𝑟𝑔𝑒𝑡 ). Based on this, we can generate each group’s prediction
set based on its actual set with a certain error rate. Specifically, to
operationalize the process of introducing error rate 𝑘 , we flip each
instance (0 to 1, 1 to 0) in the group’s actual set with the probability
of 𝑘 .

Although groups in practice may have different error rates in
classification tasks (e.g., darker skinned faces are more likely to be
misclassified in facial recognition algorithms [4]), in this simulation
we apply the same error rate to both the target and others group.
This is because the current study aims to examine the factors that
affect the reliable measurement of bias, especially those statistical
factors that do not contribute to the origin or mitigation of biases
in predictive models. Since the simulated classifiers are designed to
perform equally across groups (i.e., equal error rates), any group
differences observed later implies that factors that are not related
to bias could influence the bias estimation.

4.1.4 Metric. In this simulation, we use False Positive Rate (FPR)
and False Negative Rate (FNR), commonly used metrics in fairness
research across learning analytics and machine learning literature
[9, 24]. FPR is the proportion of negative instances (e.g., students
who did not complete the course) that are incorrectly identified as
positive instances (e.g., students who completed the course) (i.e.,
𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 ). On the other hand, FNR represents the proportion
of positive instances that are incorrectly identified as negative
instances (i.e., 𝐹𝑁𝑅 = 𝐹𝑁

𝐹𝑁+𝑇𝑃 ).
Furthermore, we define bias as such:

𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 = 𝐹𝑃𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝐹𝑃𝑅𝑂𝑡ℎ𝑒𝑟𝑠

𝐹𝑁𝑅𝐷𝑖𝑓 𝑓 = 𝐹𝑁𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝐹𝑁𝑅𝑂𝑡ℎ𝑒𝑟𝑠

That is, bias is defined as the difference in a given metric between
the target group and others. A positive 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 indicates greater
bias against the target group, meaning the classifier is more likely to
incorrectly classify actual negatives as positives for the target group
compared to the others. Similarly, a positive 𝐹𝑁𝑅𝐷𝑖𝑓 𝑓 implies that
the result is more biased against the target group.While we examine
other metrics such as precision, recall, and F1 in our simulation, due
to space limitations, we mostly focus on 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 here; however,
the results for other metrics show similar trends.

4.2 Experiment Design
A simulation refers to the unique combination of the following
factors:

• Total dataset size (=|𝐴| = |𝑃 |) e.g., |𝐴| = |𝑃 | = 1000
• Target group size (=|𝐴𝑇𝑎𝑟𝑔𝑒𝑡 | = |𝑃𝑇𝑎𝑟𝑔𝑒𝑡 |) e.g.,
|𝐴𝑇𝑎𝑟𝑔𝑒𝑡 | = 10. Then |𝐴𝑂𝑡ℎ𝑒𝑟𝑠 | = 990.

• Class distribution for 𝐴𝑇𝑎𝑟𝑔𝑒𝑡 e.g., 0.1
• Class distribution for 𝐴𝑂𝑡ℎ𝑒𝑟𝑠 e.g., 0.2
• Error rate e.g., 0.1

To quantify the variability in our experiment, we repeat the
simulation of each unique combination of factors for 100 times.
And in each simulation, we compute the FPR of the target group
and others. Based on 𝐹𝑃𝑅𝑇𝑎𝑟𝑔𝑒𝑡 and 𝐹𝑃𝑅𝑂𝑡ℎ𝑒𝑟𝑠 , we can compute
𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 . Lastly, using the 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 values from 100 simulations,
we compute the 5th and 95th percentiles to show the variability of
the 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 .

As described in 4.1.3, we introduce an equal amount of error
to both the target group and others to ensure that the simulation
process itself does not introduce any bias. Therefore, theoretically
the results for the target group and others should be approximately
the same – specifically, the 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 between the two should be
approximately zero. If this is not observed, it suggests that factors
unrelated to bias may be affecting the measurement of group bias.
For example, if the 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 deviates significantly from zero in
cases where the group size is relatively small, this indicates that
group size may impact group bias measurement.

4.3 Simulation Results
4.3.1 Finding 1: Smaller group sizes result in high variability. Fig.1
shows the 5th and 95th percentiles for 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 (𝐹𝑃𝑅𝑇𝑎𝑟𝑔𝑒𝑡 −
𝐹𝑃𝑅𝑂𝑡ℎ𝑒𝑟𝑠 ), with each dot representing the median. In other words,
each bar covers the middle 90% of the data. The blue horizontal line
represents 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 = 0, which indicates that there exists no group
bias. The left plot corresponds to a scenario with a total data size
of 1,000, a class distribution of 0.3, and an error rate of 0.1, while
the right plot represents a scenario with a total data size of 10,000,
maintaining the same class distribution and error rate. For instance,
the leftmost intervals in both plots are the 5th and 95th percentiles
of the target group of size 10.

In both plots, we observe that the smaller the group size, the
wider the interval between the 5th and 95th percentiles. In other
words, smaller group sizes lead to greater variability in 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 .
For example, in the left plot, when the target group size is 10, the
interval ranges from -0.115 to 0.188. If a study were to report only
a single value, it would be equivalent to selecting one point from
this wide range. Given that the interval spans both negative (i.e.,
more biased against Others) and positive values (i.e., more biased
against Target), this could easily lead to a misinterpretation of bias
if only a single value is reported.

Therefore, we argue that this variability could have been mistak-
enly referred to as an evidence of group bias in previous studies,
specifically when any types of intervals to examine variability
are not considered and when the group size is smaller. That is, if
we were to only compare the single value of 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 , we could
wrongly conclude that the classifier exhibits bias against certain
groups. As mentioned earlier, when group size is 10, it is possible
to either argue that the classifier is biased against target group and
biased against others.

4.3.2 Finding 2: Class distribution and error rate do not impact the
variability significantly. Fig. 2 shows the 5th and 95th percentiles
for for 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 (𝐹𝑃𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝐹𝑃𝑅𝑂𝑡ℎ𝑒𝑟𝑠 ), across different class
distributions and error rates, with a total dataset size of 10,000. The
top two plots have the same class distribution of 0.3 but differ in
error rates – 0.1 (lowest) and 0.9 (highest). The bottom two plots
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Figure 1: 5th and 95th percentile intervals for 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 (𝐹𝑃𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝐹𝑃𝑅𝑂𝑡ℎ𝑒𝑟𝑠 ) with varying target group sizes. The left plot
represents a total dataset size of 1,000, while the right plot represents a dataset size of 10,000. Each bar covers from the 5th to 95th
percentiles , with a dot representing themedian value. The horizontal blue line indicates an 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 of 0 (𝐹𝑃𝑅𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐹𝑃𝑅𝑂𝑡ℎ𝑒𝑟𝑠 ).

Figure 2: 5th and 95th percentile intervals for 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 (𝐹𝑃𝑅𝑇𝑎𝑟𝑔𝑒𝑡 − 𝐹𝑃𝑅𝑂𝑡ℎ𝑒𝑟𝑠 ) with varying target group sizes across different
class distributions and error rates, with a total dataset size of 10,000. The top two plots have same class distribution of 0.3,
but each has different error rate (0.1 and 0.9). The bottom two plots have same error rate of 0.1, but each has different class
distribution (0.05 and 0.4). The horizontal blue line indicates an 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 of 0 (i.e., 𝐹𝑃𝑅𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐹𝑃𝑅𝑂𝑡ℎ𝑒𝑟𝑠 ).

show intervals for the same error rate of 0.1 but differ in class
distributions – 0.05 (lowest) and 0.4 (highest).

The overall pattern observed in Fig. 2 is consistent with finding
1, showing that the smaller group sizes result in high variability,
even with varying class distribution and error rate. That is, different

class distribution and error rate did not significantly impact the
variability of bias measurement, and there was no interaction effect
observed . For instance, when group size is 10, the percentile inter-
vals from Fig. 2 are as following: (-0.105, 0.187) for class distribution
= 0.3, error rate = 0.1; (-0.191, 0.104) for class distribution = 0.3, error
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rate = 0.9; (-0.103, 0.126) for class distribution = 0.05, error rate =
0.1; and (-0.105, 0.234) for class distribution = 0.4, error rate = 0.1.
The lengths of those intervals are approximately 0.3 for all cases.
However, when the group size is 500, the intervals become shorter:
(-0.019, 0.028) for class distribution = 0.3, error rate = 0.1; (-0.031,
0.024) for class distribution = 0.3, error rate = 0.9; (-0.023, 0.028) for
class distribution = 0.05, error rate = 0.1; and (-0.024, 0.037) for class
distribution = 0.4, error rate = 0.1. Now the lengths of the intervals
are around 0.05. And this pattern is also observed when the total
dataset size is 1,000.

4.3.3 Finding 3: Reliability issue in bias estimation persists across
different metrics. Fig. 3 shows the 5th and 95th percentile intervals
for 𝐹𝑁𝑅𝐷𝑖𝑓 𝑓 with a total dataset size of 10,000 with varying class
distributions and error rates. Consistent with Finding 1, 𝐹𝑁𝑅𝐷𝑖𝑓 𝑓

exhibits a similar trend: smaller group sizes lead to higher variability
in bias estimates. Additionally, we found that the intervals for
𝐹𝑁𝑅𝐷𝑖𝑓 𝑓 become exceptionally wide when the class distribution is
highly imbalanced (0.05) and the target group size is extremely small
(10 or 20), as illustrated in the bottom-leftmost plot of Fig 3. For
instance, when the target group size is 10 and the class distribution
is 0.05, the interval spans from -0.12 to 0.902. This suggests that
when the group size is small and positives are scarce, 𝐹𝑁𝑅𝐷𝑖𝑓 𝑓 can
be substantially inflated.

We also observed a similar pattern of unreliable bias estimation
with smaller group sizes across other metrics, including precision,
recall, and F1 score. The simulation in this paper focused solely
on proportion-based metrics; therefore, we did not examine AUC,
a threshold-independent metric, and plan to investigate it in the
future research. However, we did evaluate AUC in the real data
analysis in Section 5, and based on these results, we anticipate that
AUC would exhibit similar patterns.

5 Real-World Data Analysis with Bootstrapping
In this section, we address RQ2: How can we make bias estima-
tion more reliable with further statistical evidence? To answer this
question, we use a real-world dataset and build a machine learning
model to predict student success/dropout. Note that this section is
for illustrative purposes – that is, optimizing the machine learning
models for best performance is beyond the scope of this paper.

5.1 Data
We chose a dataset named Predict Students’ Dropout and Academic
Success from the UC Irvine Machine Learning Repository 2. This
dataset was collected to develop a machine learning model that
predicts academic success and failure in higher education [28]. The
data were originally collected from 4,424 students but we used 3,630
students’ information to binarize the output variable (graduate vs.
dropout). Among 36 features, we use a binary variable gender to
construct groups (female and male)3, and selected 7 variables (pre-
vious qualification, grade from previous qualification, mother job,
father job, admission grade, educational special needs, scholarship

2https://archive.ics.uci.edu/dataset/697/predict+students+dropout+and+academic+
success
3While gender is understood as a spectrum, the dataset used in this study classifies
gender as a binary variable. This limitation reflects the structure of the data and not
our perspective on gender.

holder) as predictors based on [28] to predict students’ success (i.e.,
graduation).

Among 3,630 students, around 60% of the students graduated
while 40% dropped out. In other words, the class distribution is 0.6.
Specifically, the data consists of 2,381 female students (∼65%) and
1,249 male students (∼35%). Among female students, around 70% of
students graduated while 30% of them dropped out (i.e., the class
distribution for female students was 0.7). Among male students,
around 44% of students graduated while 56% of them dropped out
(i.e., the class distribution for male students was 0.44).

5.2 Modeling
We first built a logistic regression model that predicts students’
graduation using the 7 variables mentioned above. We split the data
into a training set (70%) and a test set (30%), and used stratified
sampling to make sure each set maintains a similar proportion of
gender. Because optimization is not the purpose of this paper, we
skipped the hyperparameter tuning or the feature selection process.
For evaluation, we selected FPR and AUC as metrics, representing
proportion-based and threshold-independent measures respectively.
The baseline model performance was FPR = 0.64, and AUC = 0.72.
For given groups divided by gender variable, the female group had
AUC of 0.722 and FPR of 0.679. For the male group, AUC was 0.69,
and FPR was 0.616.

5.3 Bias Analysis
To construct confidence intervals for bias analysis, we propose two
approaches based on whether the performance metric is based on
proportions (e.g., FPR) or not (e.g., AUC):

(1) Confidence Interval for 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 : Newcombe’s Hybrid
Score Method
We use Newcombe’s hybrid score method [31] to construct a
confidence interval for 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 . Newcombe’s hybridmethod
is designed to estimate the difference between two binomial
proportions, and is known for its robust performance even
with small sample sizes (See [3, 15, 31] for a detailed ex-
planation of Newcombe’s method). Since FPR is a binomial
proportion (𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 ) and our bias metric is the differ-
ence between two groups, this method is well-suited for our
analysis. Note that Newcombe’s hybrid score method makes
confidence intervals without bootstrapping. That is, we com-
pute the confidence interval of the computed 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 be-
tween female and male groups. If the confidence interval for
𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 includes 0, we cannot reject the null hypothesis
that the FPRs for the female and male groups are the same.
Conversely, if the confidence interval does not include 0, it
suggests a statistically significant difference in FPR between
the two groups.
However, Newcombe’s hybrid score method is only used for
constructing confidence intervals with two binomial pro-
portions. Therefore, non-proportion based metrics like AUC
could not use this method to construct confidence intervals.
To construct confidence intervals for AUC, we use bootstrap-
ping.

(2) Confidence Interval for 𝐴𝑈𝐶𝐷𝑖𝑓 𝑓 : Bootstrapping (Bias-
Corrected and Accelerated Bootstrap interval method)
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Figure 3: 5th and 95th percentile intervals for 𝐹𝑁𝑅𝐷𝑖𝑓 𝑓 , with total dataset size 10000 and varying class distributions and error
rates. Note that the bottom-leftmost plot uses a different y-axis scale for clarity.

After completing the modeling process, we conducted a boot-
strapping analysis to construct a confidence interval for
𝐴𝑈𝐶𝐷𝑖𝑓 𝑓 . Bootstrapping is a statistical technique to estimate
the distribution of sample statistics by repeatedly resampling
with replacement from the original data [6]. By using boot-
strapping, we can repeatedly resample small amounts of
data points multiple times and construct confidence inter-
vals empirically for metrics like AUC, which is not a binomial
proportion.
We conduct bootstrapping by resampling the data with re-
placement for 10,000 iterations. The size of each resample is
equal to the size of the original dataset, which is 3,630. For
each of the resamples, we compute the AUC for both female
and male groups, and then calculate the 𝐴𝑈𝐶𝐷𝑖𝑓 𝑓 . Based
on the bootstrapped results, we use the Bias-Corrected and
Accelerated (BCa) bootstrap interval method to construct
a confidence interval for 𝐴𝑈𝐶𝐷𝑖𝑓 𝑓 , which adjusts for both
bias and skewness in the bootstrap distribution [14].

5.4 Results
The top interval in Fig. 4 is the 95% confidence interval for the
𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 and is computed using theNewcombeHybrid scoremethod,
with the red dot indicating the computed 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 of 0.063. The
confidence interval is (-0.028,0.153), including 0. Therefore, we can-
not reject the null hypothesis that the two groups have the same
FPR.

The bottom interval in Fig. 4 is the 95% BCa confidence interval
for the𝐴𝑈𝐶𝐷𝑖𝑓 𝑓 and is computed using bootstrapping, with the red
dot representing the computed 𝐴𝑈𝐶𝐷𝑖𝑓 𝑓 of 0.032. The confidence
interval is (-0.004, 0.069), also including 0. Therefore, similar to the
𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 , we cannot reject the null hypothesis that the two groups
have the same AUC.

Whether using the Newcombe hybrid score method or boot-
strapping, constructing confidence intervals in this way can help
interpret observed group differences at hand. For instance, suppose
we only examine the computed difference values (𝐹𝑃𝑅𝐷𝑖 𝑓 𝑓 = 0.063,

Figure 4: 95% Confidence Intervals for 𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 and 𝐴𝑈𝐶𝐷𝑖𝑓 𝑓 .
𝐹𝑃𝑅𝐷𝑖𝑓 𝑓 is computed using the NewcombeHybrid scoremethod,
while 𝐴𝑈𝐶𝐷𝑖𝑓 𝑓 is computed using bootstrapping and BCa. Each
red dot represents the computed model performance difference
between female and male.

Figure 5: Distribution of bootstrapped 𝐴𝑈𝐶𝐷𝑖𝑓 𝑓 s
between female and male groups.

𝐴𝑈𝐶𝐷𝑖 𝑓 𝑓 = 0.032). We would lack statistical evidence to determine
whether these computed differences are meaningful. Worse, these
values could be misinterpreted as evidence of group bias. Confi-
dence interval shows a range of values for bias estimation, and
helps us understand if the computed group differences at hand
could indicate group bias or not. Hence, estimating bias becomes
more reliable with confidence intervals.
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6 Discussion
6.1 Summary of Findings
In this paper, we examine two research questions: 1) What statis-
tical factors influence the reliable estimation of bias in predictive
learning analytics, and 2) How can we make bias estimation more
reliable with further statistical evidence? We first conducted a sim-
ulation study to explore how group sample size, class distribution,
error rate, and metrics – those that in theory do not introduce or
mitigate bias within the machine learning pipelines – could affect
the reliable estimation of group bias, while ensuring that an equal
amount of classification error was applied to each group. We found
that group sample size affects the estimation of group bias. Specifi-
cally, smaller group sizes lead to high variability in bias estimation,
making the bias estimation process unreliable.

Furthermore, we used real-world data and applied Newcombe’s
Hybrid score method and bootstrapping to construct confidence
intervals for FPR Difference and AUCDifference. Our findings show
that while the computed group differences might indicate group
bias, the confidence intervals implied that we cannot reject the null
hypothesis that the model performances for the two groups are the
same.

Therefore, this paper demonstrates that the current approaches
of simply computing differences inmodel performance across groups
lack reliability. In the worst-case scenario, the reported "bias" is not
actually group bias, but a result of insufficient samples – that is,
the computed difference arises from sampling error. Therefore, we
need to make the bias estimation process more reliable with further
statistical evidence, such as using confidence intervals.

6.2 Implications to Research and Practice
Based on the findings from sections 4 and 5, we make some rec-
ommendations for learning analytics researchers and practitioners
who study algorithmic bias.

6.2.1 Use a large enough group size. In section 4, we showed that
small group sizes lead to high variability in group bias estimation.
This indicates that the bias estimation, and any interpretations
based on it, would be unreliable. In the worst case, the observed
bias could simply result from insufficient sample sizes. That is, the
variability caused by sampling error may have been mistakenly
interpreted as bias in previous literature.

Therefore, it is crucial to ensure that group sizes are large enough
when estimating group bias. This is not a new idea – in statistics,
having a large enough sample size is essential for making accurate
estimates about the population [27, 32, 39]. Furthermore, small
group sizes reduce statistical power, making it harder to detect true
effects. Therefore, it is important to use a large enough group size
to ensure accurate identification and measurement of group bias.

However, we also acknowledge that collecting more data points,
particularly for historically marginalized groups, is not an easy
task. As Karumbaiah et al. [22] discussed, collecting more data for
marginalized people could come at the cost of increased surveillance
and compromised privacy and individual agency. Hence, if it is
impossible to collect more samples, we suggest a bootstrapping
method (see section 5). Even when you have a small number of
samples collected, you can resamplewith replacement and construct

a confidence interval to help identify if the observed bias with the
samples at hand is reliable.

6.2.2 Construct confidence intervals for reliability. To the best of
our knowledge, algorithmic bias audits do not report confidence
intervals. Instead, a common practice is reporting a single value
(e.g., the FPR difference between a target group and others is 0.01).
However, as discussed in section 4, there exists sampling error
in bias measurement, particularly when the group size is small.
Hence, the current practice lacks reliability: without reliability, it is
impossible to declare the presence or absence of group bias, or make
any conclusive statements about bias. This inaccurate estimation
of group bias not only undermines the accuracy of bias auditing
but could also complicate the bias mitigation process, potentially
harming minority groups.

Hence, reporting group bias should go beyond merely reporting
single difference values and instead compute confidence intervals
to quantify the uncertainty in the estimated values, and if desired,
also test for statistical significance.

Specifically, we suggest constructing confidence intervals as
follows.

• Metrics based on proportion (e.g., FPR, FNR): You could use
the Newcombe Hybrid Score method to construct confidence
intervals when you compute two independent groups’ dif-
ferences.

• Metrics that are not based on proportion (e.g., AUC): Conduct
bootstrapping (resample with replacement your collected
samples for multiple iterations). Then construct BCa confi-
dence intervals.

6.2.3 Examining at least two metrics for comprehensive bias analy-
sis. Furthermore, we recommend estimating group bias using more
than one performance metric. This recommendation arises from
our observation from the simulation that FNR Difference can be in-
flated when the sample size is small and actual positives are scarce.
Therefore, we advise using at least two different performance met-
rics to ensure a comprehensive evaluation and to verify whether
they result in consistent conclusions.

6.2.4 Beyond the false dichotomy of the "presence or absence of
bias.". Our study also emphasizes the need to move beyond the
goal of declaring "presence or absence of group bias" based on
computed group differences. We argue that no non-trivial algorithm
in education that is useful is entirely free of bias – societal biases
can be introduced at every step of the design and deployment of
predictive models. Prematurely declaring absence of bias when
there are insufficient samples in minority groups raises additional
concerns on validity. Hence, we recommend that methodological
research on group bias should focus instead on understanding "how
much" an algorithm is biased against certain demographic groups.

6.3 Limitations
While this study investigates factors affecting the reliability of
group bias estimation and explores how to make bias estimation
more reliable with further statistical evidence, a few limitations
should be considered for future research. First, we assume the pres-
ence of only two mutually exclusive groups in both the simulation
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and real-world analysis. However, in practice, groups may share at-
tributes, leading to intersectional groups within the data (e.g., black
and black female). Therefore, it would be valuable to explore how
intersectional bias measurement might be influenced by group size
and other relevant factors. Additionally, our simulation only used
proportion based metrics such as FPR and FNR for simplicity. Using
other non-proportion based metrics such as AUC could provide a
more comprehensive evaluation of group bias.

In conclusion, our study demonstrated that the current practices
for identifying and estimating group bias in predictive learning ana-
lytics face significant reliability issues, likely due to sampling error
in minority groups. To address this, we recommend approaches
such as constructing confidence interval with Newcombe Hybrid
Score or bootstrapping. Improving methods used for bias research
is crucial to prevent our efforts from further exacerbating bias for
minority groups.
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