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Abstract. For a random polynomial with standard normal coefficients, two

cases of the K-level crossings have been considered by Farahmand. For inde-

pendent coefficients, Farahmand derived an asymptotic value for the expected

number of level crossings, even if K grows to infinity. Alternatively, he showed

that coefficients with a constant covariance have half as many crossings. Given

these results, the purpose of this paper is to study the behavior for dependent

standard normal coefficients where the covariance is decaying. Using similar

techniques to Farahmand, we will show that for a wide range of covariance

functions behavior similar to the independent case can be expected.

1. Introduction

For the random polynomial given by

(1.1) Pn(x) =

n∑
k=0

Xkx
k,

consider the problem of computing the expected number of real zeros for the equa-

tion Pn(x) = K, where K is a given constant. These are known as the K-level

crossings of Pn(x). The random polynomial Pn(x) is an example of a non-stationary

random process. Random processes and their level crossings have applications in

various fields, including the study of random noise [8, 9] and wireless communca-

tions [1]. A further discussion of random processes and their applications can be

found in [6].

In this paper we will focus on the K-level crossings of the random polynomial

Pn(x) when the coefficients are assumed to be standard normal random variables.
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For such coefficients, two separate cases were previously considered by [4, 5]. The

first assumes the coefficients are independent. Here, Farahmand derived an asymp-

totic value for the expected number of level crossings, for both K bounded and K

growing with n. The second case deals with dependent coefficients with a constant

covariance ρ, where ρ ∈ (0, 1). What Farahmand showed here was that the constant

covariance causes the expected number of level crossings to be reduced by half.

Motivated by the results of Farahmand in these two extreme cases, it would be

of interest to see what happens when there is some decay of the covariance. For the

special case of K = 0, it was shown in [7] that behavior similar to the independent

case can be expected when certain assumptions are made on the covariance function.

With that in mind, we would like to see if this behavior holds more generally, for

non-zero values of K. So, the goal of this paper is to further study the behavior

of the crossings for the dependent case, when there is some decay of the covariance

between the coefficients.

The setup for this problem will be as follows. Let X0, X1, . . . be a stationary

sequence of normal random variables, where the covariance function is given by

Γ(k) = E [X0Xk] , Γ(0) = 1.

Similar to our investigation in [7], we will express Γ(k) using the spectral density.

That is,

(1.2) Γ(k) =

∫ π

−π
e−ikφf(φ)dφ,

where f(φ) is the spectral density of the covariance function (in addition to the

discussion in [7], see [2] and [3] for further references). By imposing certain condi-

tions on the spectral density, for the random polynomial Pn(x) given by (1.1), we

will be able to study the level crossings for a wide range of covariance functions.

Our work will cover two different assumptions on K, similar to those considered

by Farahmand. As long as the spectral density has nice enough properties, similar

behavior to the independent case can be expected. Assuming K is bounded, if we
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require that the spectral density is positive and in C ([−π, π]), we will be able to

show that the expected number of level crossings will behave asymptotically like

2
π log n as n → ∞. On the other hand, if K is allowed to grow along with n, such

that K = o
(√

n
log logn

)
, and if the spectral density is positive and in C1 ([−π, π]),

the expected number of crossings in the interval (−1, 1) is reduced. These results

will be proved using the techniques developed in [4, 5], as well as the spectral

density of the covariance function. We will also make use of several results from [7],

which in turn draws heavily from [10]. Letting NK(α, β) be the number of K-level

crossings of Pn(x) in the interval (α, β), the main theorem is formulated as follows.

Theorem 1.1. Assume that the spectral density exists and is strictly positive.

(i) For K bounded and f(φ) ∈ C([−π, π]) we have

E [NK (−1, 1)] = E [NK (−∞,−1) +NK (1,∞)] ∼ 1

π
log n.

(ii) For K = o
(√

n
log logn

)
and f(φ) ∈ C1([−π, π]) we have

E [NK (−1, 1)] =
1

π
log

n

K2
+O (log log n) ,

E [NK (−∞,−1) +NK (1,∞)] =
1

π
log n+O (log log n) .

To begin with, using the Kac-Rice formula derived in [6], we have

E [NK (α, β)] =
1

π

∫ β

α

√
AC −B2

A
exp

(
− K2C

2 (AC −B2)

)
dx

+
1

π

∫ β

α

√
2|BK|
A3/2

exp

(
−K

2

2A

)
erf

(
| −BK|√

2A (AC −B2)

)
dx

=

∫ β

α

F1dx+

∫ β

α

F2dx,

(1.3)



4 JEFFREY MATAYOSHI

where A(x) = E[P 2
n(x)], B(x) = E[Pn(x)P ′n(x)], and C(x) = E[(P ′n(x))2]. From

(2.6), (2.7), and (2.8) in [7], we have

A =

n∑
k=0

n∑
j=0

Γ(k − j)xk+j

=

∫ π

−π

1− xn+1e−i(n+1)φ

1− xe−iφ
· 1− xn+1ei(n+1)φ

1− xeiφ
f(φ)dφ,

B =

n∑
k=0

n∑
j=0

Γ(k − j)kxk+j−1

=

∫ π

−π

(
1− xn+1e−i(n+1)φ

1− xe−iφ

)
·
(
−(n+ 1)xnei(n+1)φ(1− xeiφ)− (1− xn+1ei(n+1)φ)(−eiφ)

(1− xeiφ)2

)
f(φ)dφ,

C =

n∑
k=0

n∑
j=0

Γ(k − j)kjxk+j−2

=

∫ π

−π

(
−(n+ 1)xne−i(n+1)φ(1− xe−iφ)− (1− xn+1e−i(n+1)φ)(−e−iφ)

(1− xe−iφ)2

)
·
(
−(n+ 1)xnei(n+1)φ(1− xeiφ)− (1− xn+1ei(n+1)φ)(−eiφ)

(1− xeiφ)2

)
f(φ)dφ.

(1.4)

2. Expected Number of Level Crossings on (−1, 1)

To prove Theorem 1.1 we will start as in [4, 5]. That is, our first step will be to

show that the contribution from the integral of F2 on (−1, 1) is negligible.

Lemma 2.1. For f(φ) continuous and positive we have∫ 1

−1
F2dx = o(log log n).

Proof. Since f(φ) is a continuous, positive function, we can find constants c1, c2 > 0

such that c1
2π > f(φ) > c2

2π for any φ ∈ [−π, π]. Now, for the interval (−1 +

log logn
n , 1− log logn

n ) we have

A ∼
∫ π

−π

1

(1− xe−iφ)(1− xeiφ)
f(φ)dφ,
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from which we can then derive the lower bound

(2.1) A ≥ c2
2π

∫ π

−π

1

(1− xe−iφ)(1− xeiφ)
dφ =

c2
1− x2

.

Using the fact that f ≡ 1
2π in the independent case, we can derive an upper bound

as well, where

A ≤ c1
2π

∫ π

−π

(
1− xn+1e−i(n+1)φ

) (
1− xn+1ei(n+1)φ

)
(1− xe−iφ)(1− xeiφ)

dφ

= c1
1− x2n+2

1− x2
≤ c1

1− x2
.

(2.2)

Notice that this upper bound holds on the entire interval (−1, 1). Next, from the

proof of Lemma 3.1 in [7] we know that

|B| ∼
∫ π

−π

∣∣∣∣ eiφ

(1− xe−iφ)(1− xeiφ)2

∣∣∣∣ f(φ)dφ,

which implies

|B| ≤ 1

1− |x|

∫ π

−π

1

(1− xe−iφ)(1− xeiφ)
f(φ)dφ ∼ 1

1− |x|
A.

By the above and (2.1) we have

|B|
A3/2

≤ 1

1− |x|

(
1− x2

c2

)1/2

≤
√

2

c2

1

(1− |x|)1/2
,

while from (2.2) we get

exp

(
−K2

2A

)
≤ 1

1 + K2(1−x2)
2c1

≤ 1

1 + K2(1−|x|)
2c1

.

Since erf(x) ≤ 1, we then have

(2.3)

∫ 1− log log n
n

−1+ log log n
n

F2dx ≤ 2

√
2

c2

∫ 1− log log n
n

0

|K|(1− x)−1/2

1 + K2(1−x)
2c1

dx = O(1).

Next, for x ∈ (−1,−1 + log logn
n )∪ (1− log logn

n , 1), we can use (1.4) and (2.2) to get

|B| ≤ n

|x|

n∑
k=0

n∑
j=0

Γ(k − j)|x|k+j ≤ nc1
|x|

n∑
k=0

x2k.
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Also,

A ≥ c2
2π

∫ π

−π

(
1− xn+1e−i(n+1)φ

) (
1− xn+1ei(n+1)φ

)
(1− xe−iφ)(1− xeiφ)

dφ = c2

n∑
k=0

x2k,

from which it then follows that

|B|
A3/2

≤ nc

(
n∑
k=0

x2k

)−1/2

≤ nc

(
n∑
k=0

(
1− log log n

n

)2k
)−1/2

∼ c (n log log n)
1/2

.

Thus,

√
2

π

∫ 1

1− log log n
n

F2 ≤ c
∫ 1

1− log log n
n

|K| (n log log n)
1/2

= o (log log n) .

We can use a similar procedure to show that

√
2

π

∫ −1+ log log n
n

−1
F2 = o(log log n),

which then proves the claim. �

We will next show that the expected number of crossings on the intervals (0, 1−
1

logn ), (1− log logn
n , 1), (−1 + 1

logn , 0) and (−1,−1 + log logn
n ) is negligible.

Lemma 2.2. Assume f(φ) is continuous and positive. For the intervals (−1,−1 +

log logn
n ), (−1 + 1

logn , 0), (0, 1− 1
logn ), and (1− log logn

n , 1), the expected number of

crossings is O(log log n).

Proof. To start, we note that since the quantity K2C
AC−B2 is never negative, the

inequality

exp

(
− K2C

2 (AC −B2)

)
≤ 1

holds in general. It follows that

(2.4)

∫ β

α

F1dx ≤
1

π

∫ β

α

√
AC −B2

A
dx.
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Since this last formula is simply the expected number of zeros of Pn(x) on the

interval (α, β), applying Lemma 2.1 from above, along with Lemma 2.1 from [7],

the result then follows. �

The last lemma of this section will derive asymptotic values for the integral of

F1 on the intervals (−1 + log logn
n ,−1 + 1

logn ) and (1− 1
logn , 1−

log logn
n ).

Lemma 2.3. For the integral of F1 on the intervals (−1 + log logn
n ,−1 + 1

logn ) and

(1− 1
logn , 1−

log logn
n ) we have the following:

(i) For K bounded and f ∈ C ([−π, π]),

1

π

∫ −1+ 1
log n

−1+ log log n
n

F1 =
1

π

∫ 1− log log n
n

1− 1
log n

F1 ∼
1

2π
log n.

(ii) For K = o
(√

n
log logn

)
and f ∈ C1 ([−π, π]),

1

π

∫ −1+ 1
log n

−1+ log log n
n

F1 =
1

π

∫ 1− log log n
n

1− 1
log n

F1 =
1

2π
log
( n

K2

)
+O (log log n) .

Proof. We will follow a similar procedure to that used by [4, 5]. That is, an as-

ymptotic value for the integral of F1 will be obtained by deriving upper and lower

bounds for the integral, whereupon the true asymptotic value will then lie between

these. Let g(y) = y logn
log logn . Let x = 1 − y ∈ (1 − 1

logn , 1 −
log logn

n ) and assume

f(φ) ∈ C ([−π, π]) and K is bounded. Using (3.2), (3.5), and (3.9) from [7], along

with (1.3), we have

1

π

∫ 1− log log n
n

1− 1
log n

F1 ∼
1

π

∫ 1
log n

log log n
n

1

2y

1− K2y

2f(0) arctan
(
g(y)
y

)
 dy ∼ 1

2π
log n.(2.5)

Next, let f(φ) ∈ C1 ([−π, π]) and K = o
(√

n
log logn

)
. Using (3.2), (3.5), and

(3.9) from [7] once more gives

K2C

2(AC −B2)
=

K2y

2f(0) arctan
(
g(y)
y

) +O

(
K2y2

g(y)

)
.
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Now, we can choose positive constants a1 and a2 such that for large enough n

a1K
2y

2f(0) arctan
(
g(y)
y

) ≤ K2y

2f(0) arctan
(
g(y)
y

) +O

(
K2y2

g(y)

)

≤ a2K
2y

2f(0) arctan
(
g(y)
y

) ,
which along with (3.11) from [7] then yields

(2.6)

[
1

2y
+O

(
1

g(y)

)]
exp

 −a2K2y

2f(0) arctan
(
g(y)
y

)


≤ F1 ≤
[

1

2y
+O

(
1

g(y)

)]
exp

 −a1K2y

2f(0) arctan
(
g(y)
y

)
.

For i = 1, 2 we have

(2.7)

[
1

2y
+O

(
1

g(y)

)]
exp

 −aiK2y

2f(0) arctan
(
g(y)
y

)


=
1

2y
exp

 −aiK2y

2f(0) arctan
(
g(y)
y

)
+O

(
1

g(y)

)
.
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Thus, using an argument similar to the one on page 706 in [4],

1

π

∫ 1
log n

log log n
n

[
1

2y
exp

 −aiK2y

2f(0) arctan
(
g(y)
y

)
+O

(
1

g(y)

)]
dy

=
1

π

∫ 1
log n

log log n
n

1

2y
exp

(
−cK2y

)
dy +O (log log n)(

where c = ai

[
2f(0) arctan

(
g(y)
y

)]−1)
=

1

2π

[
log

(
cK2 1

log n

)
− log

(
cK2 log log n

n

)]

+
1

2π

∫ cK2 log log n
n

0

1− e−t

t
dt− 1

2π

∫ cK2 1
log n

0

1− e−t

t
dt

=
1

2π
log n+

1

2π

∫ cK2 log log n
n

0

1− e−t

t
dt− 1

2π

∫ cK2 1
log n

0

1− e−t

t
dt+O (log log n) .

(2.8)

Since we are assuming that K2 log logn
n → 0 as n→∞, the first integral is o(1). For

the second, we again use an argument drawn from page 706 in [4] to get

= − 1

2π

∫ cK2 1
log n

1

1− e−t

t
dt− 1

2π

∫ 1

0

1− e−t

t
dt

= − 1

2π

∫ cK2 1
log n

1

1

t
dt+

1

2π

∫ cK2 1
log n

1

e−t

t
dt+O(1)

= − 1

2π
logK2 +O (log log n) .

(2.9)

By (2.6), (2.7), (2.8), and (2.9) it then follows that

(2.10)
1

π

∫ 1− log log n
n

1− 1
log n

F1 =
1

2π
log
( n

K2

)
+O (log log n) .

We will next handle the interval (−1+ log logn
n ,−1+ 1

logn ). The relevant equations

for A, B, and C are given by (3.15), (3.16), and (3.19) in [7]. Noting that these

equations differ from the positive case only by the constants multiplying the leading
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terms, we can apply the exact same procedure as before to show that

1

π

∫ 1− log log n
n

1− 1
log n

F1 ∼
1

π

∫ 1
log n

log log n
n

1

2y

1− K2y

2f(π) arctan
(
g(y)
y

)
 dy ∼ 1

2π
log n,

(2.11)

for f(φ) ∈ C ([−π, π]) and K bounded, and

(2.12)
1

π

∫ −1+ 1
log n

−1+ log log n
n

F1 =
1

2π
log
( n

K2

)
+O (log log n) ,

for f(φ) ∈ C1 ([−π, π]) and K = o

(√
n

log log n
n

)
. Combined with (2.5) and (2.10),

this completes the proof. �

3. Expected Number of Level Crossings on (−∞,−1) and (1,∞)

Now that we have derived the expected number of zeros for (−1, 1), this last

section will consider the remaining intervals (−∞,−1) and (1,∞). We will start

with the latter. As done by [4, 5], let x = 1
z . Using (1.4), for z ∈ (0, 1) we have

A

(
1

z

)
= z−2n

∫ π

−π

1− zn+1ei(n+1)φ

1− zeiφ
· 1− zn+1e−i(n+1)φ

1− ze−iφ
f(φ)dφ,

B

(
1

z

)
= −z−2n+1

∫ π

−π

1− zn+1ei(n+1)φ

1− zeiφ

·
−(n+ 1)

(
1− ze−iφ

)
+ 1− zn+1e−i(n+1)φ

(1− ze−iφ)
2 f(φ)dφ,

C

(
1

z

)
= z−2n+2

∫ π

−π

−(n+ 1)
(
1− zeiφ

)
+ 1− zn+1ei(n+1)φ

(1− zeiφ)
2

·
−(n+ 1)

(
1− ze−iφ

)
+ 1− zn+1e−i(n+1)φ

(1− ze−iφ)
2 f(φ)dφ.

(3.1)

As before, the first step is to get a bound for the integral of F2.

Lemma 3.1. ∫ ∞
1

F2dx =

∫ −1
−∞

F2dx = o(1).
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Proof. We have

∫ ∞
1

F2dx ≤
√

2

π

∫ ∞
1

|B(x)K|
A3/2(x)

dx =

√
2

π

∫ 1

0

1

z2

∣∣B ( 1z )K∣∣
A3/2

(
1
z

) dz.(3.2)

Let c1 and c2 be as in the proof of Lemma 2.1. Then, for z ∈ (−1, 0) ∪ (0, 1),∣∣∣∣B(1

z

)∣∣∣∣ ≤ n|z|−2n+1
n∑
k=0

n∑
j=0

Γ(k − j)|z|2n−k−j

= n|z|−2n+1A(|z|)

≤ c1n|z|−2n+1 1− z2n+2

1− z2
,

where the last line is given by (2.2). Also,

A

(
1

z

)
≥ z−2n c2

2π

∫ π

−π

1− zn+1ei(n+1)φ

(1− zeiφ)
· 1− zn+1e−i(n+1)φ

(1− ze−iφ)
dφ

= c2z
−2n 1− z2n+2

1− z2
.

Thus, ∣∣B ( 1z )∣∣
A3/2

(
1
z

) ≤ cn|z|n+1

√
1− z2

1− z2n+2
.

Consider the interval (0, 1 − 1√
n

). Recalling that K = o
(√

n
log logn

)
, the above

inequality yields

√
2

π

∫ 1− 1√
n

0

1

z2

∣∣B ( 1z )K∣∣
A3/2

(
1
z

) dz ≤ c|K|∫ 1− 1√
n

0

nzn−1
√

1− z2
1− z2n+2

≤ c|K|
(

1− 1√
n

)n
= o(1).
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Next, for z ∈ (1− 1√
n
, 1) we have

√
2

π

∫ 1

1− 1√
n

1

z2

∣∣B ( 1z )K∣∣
A3/2

(
1
z

) dz
≤ c|K|

∫ 1

1− 1√
n

nzn−1
√

1− z2
1− z2n+2

= c|K|zn
√

1− z2
1− z2n+2

∣∣∣∣∣
1

1− 1√
n

− c|K|
∫ 1

1− 1√
n

zn
d

dz

(√
1− z2

1− z2n+2

)
dz = o(1),

where the last line follows from the fact that

d

dz

(√
1− z2

1− z2n+2

)
= O

(√
n
)

on z ∈ (1 − 1√
n
, 1). Applying (3.2), this proves the result for (1,∞). Noting that

the same argument works for −z, the result then follows for (−∞,−1) as well. �

The next lemma will evaluate the integral of F1.

Lemma 3.2. (i) For f ∈ C ([−π, π]),∫ ∞
1

F1dx =

∫ −1
−∞

F1dx ∼
1

2π
log n.

(ii) For f ∈ C1 ([−π, π]),∫ ∞
1

F1dx =

∫ −1
−∞

F1dx =
1

2π
log n+O (log log n) .

Proof. We will prove the result assuming that f ∈ C1 ([−π, π]); the resulting argu-

ment will require only a few minor changes to prove the claim for f ∈ C ([−π, π]).

As in Lemma 2.3, this will be done by bounding the true asymptotic value between

an upper and a lower bound. To start, we have the inequality∫ ∞
1

F1dx ≤
1

π

∫ ∞
1

√
A(x)C(x)−B2(x)

A(x)
dx.
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Notice that the expression on the right is simply the expected number of real zeros

of Pn(x) on (1,∞). Similarly,∫ −1
−∞

F1dx ≤
1

π

∫ −1
−∞

√
A(x)C(x)−B2(x)

A(x)
dx,

where now the expression on the right is the expected number of real zeros of Pn(x)

on (−∞,−1). Thus, Theorem 1.1 in [7] yields the upper bounds∫ ∞
1

F1dx ≤
1

2π
log n+O (log log n) ,∫ −1

−∞
F1dx ≤

1

2π
log n+O (log log n) .

(3.3)

The rest of the proof will be devoted to the derivation of a lower bound.

Consider the interval (1 − 1
logn , 1 −

log logn
n ). Let z = 1 − y, and recall that

g(y) = y logn
log logn . We will next need to make use of the asymptotic formulas∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)
=

2f(0)

y
arctan

(
g(y)

y

)
+O

(
1

g(y)

)
,∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)
2 =

f(0)

y2
arctan

(
g(y)

y

)
+O

(
1

yg(y)

)
,∫ π

−π

f(φ)dφ

(1− zeiφ)
2

(1− ze−iφ)
2 =

f(0)

y3
arctan

(
g(y)

y

)
+O

(
1

y2g(y)

)
,

(3.4)

which are derived in the proof of Lemma 3.1 in [7]. Combining (3.1), (3.4), and

some tedious algebra, we obtain the expression

A

(
1

z

)
C

(
1

z

)
−B2

(
1

z

)

= z−4n+2

[∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)
·
∫ π

−π

f(φ)dφ

(1− zeiφ)
2

(1− ze−iφ)
2

−

(∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)
2

)2

+O

(
(n+ 1)zn+1

∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)
·
∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)
2

)]
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= (1− y)−4n+2

[
f2(0)

y4
arctan2

(
g(y)

y

)
+O

(
1

y3g(y)

)]
.

Thus,

(3.5)

√
A
(
1
z

)
C
(
1
z

)
−B2

(
1
z

)
A
(
1
z

) = (1− y)

[
1

2y
+O

(
1

g(y)

)]
.

Also, if we refer to (3.4) once more,

(3.6) C

(
1

z

)
∼ (1− y)−2n+2 2(n+ 1)2f(0)

y
arctan

(
g(y)

y

)
.

Applying (1.3) we then have∫ ∞
1

F1dx =

=
1

π

∫ 1

0

1

z2

√
A
(
1
z

)
C
(
1
z

)
−B2

(
1
z

)
A
(
1
z

) exp

(
−

K2C
(
1
z

)
2
(
A
(
1
z

)
C
(
1
z

)
−B2

(
1
z

))) dz
≥ 1

π

∫ 1− log log n
n

1− 1
log n

1

z2

√
A( 1

z )C( 1
z )−B2( 1

z )

A( 1
z )

exp

(
−

K2C( 1
z )

2
(
A( 1

z )C( 1
z )−B2( 1

z )
)) dz

=
1

π

∫ 1
log n

log log n
n

[
1

2y(1− y)

[
1 +O

(
K2(n+ 1)2(1− y)2ny3

)]
+O

(
1

g(y)

)]
dy

=
1

2π
log n+O (log log n) .

Noting that almost the exact same argument holds for −z,∫ −1
−∞

F1dx ≥
1

2π
log n+O (log log n) ,

as well. Combined with (3.3), the claim then follows. �

Proof of Theorem 1.1. Combining the results of Lemmas 2.1, 2.2, 2.3, 3.1, and 3.2,

Theorem 1.1 now follows. �
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