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Abstract of the Dissertation

On the Zeros of Random Polynomials

By

Jeffrey Seiichi Matayoshi

Doctor of Philosophy in Mathematics
University of California, Irvine, 2009
Professor Michael Cranston, Chair

In this dissertation we will prove several results pertaining to the properties of

zeros of random polynomials. We will begin with a discussion of the expected number

of real zeros for random polynomials with dependent standard normal coefficients.

With certain restrictions imposed on the spectral density of the coefficients’ covariance

function, we will show that similar behavior to the independent case can be expected.

Specifically, the value of the expected number of real zeros grows asymptotically like

2
π

log n, as n → ∞. After studying the real zeros, we will next consider the number

of K-level crossings. Again imposing certain restrictions on the spectral density, an

asymptotic value will be derived for the expected number of K-level crossings of

random polynomials with dependent standard normal coefficients.

The next problem that will be considered is a study of the distribution of the com-

plex zeros. Once more imposing restrictions on the spectral density, we will show that

the complex zeros of random polynomials with dependent standard normal coefficients

converge to the unit circle. Additionally, we will derive expressions approximating

how fast this convergence happens. By then adapting the techniques used in the

aforementioned problem, we will study the behavior of random polynomials which

have applications to the GSM (Global System for Mobile Communications)/EDGE

(Enhanced Data Rates for GSM Evolution) standard for mobile phones.

The last part of our work will consider the zeros of random sums of orthogonal

xii



polynomials. For a random sum of the Chebyshev polynomials of the first kind,

orthogonalized over the interval [−1, 1], we will show that the distribution of zeros

converges to the corresponding equilibrium measure for this set. This result will

lay the foundation for some further work in the area of random sums of orthogonal

polynomials.
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Introduction

A random polynomial is any polynomial of the form

(1) Pn(x, ω) = Pn(x) =
n∑

k=0

Xkx
k,

where the coefficients, Xk, are random variables, either independent or dependent,

with some given distributions. The study of random polynomials is a broad area, with

work being done on all the usual topics of interests for polynomials. This includes

studying the properties of the zeros, maximums, minimums, and level crossings. It is

an area with a rich history that contains results from such notable names as Littlewood

[18], Kac [16], and Erdös [10]. In addition to being mathematically interesting in

themselves, random polynomials have also found applications in various scientific

fields. In quantum chaos, for example, it has been shown that random polynomials

are good approximations for the eigenfunctions of the quantum Hamiltonian (see [32];

see also [3, 4] for further applications to quantum chaos). Another area of application

would be in wireless communications [26], an example of which will be covered in

more detail later. For a thorough discussion of the various properties of random

polynomials, see the books by Bharucha-Reid and Sambandham [2], and Farahmand

[13].
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This dissertation will focus on studying the various properties of random poly-

nomial zeros. In the first chapter, we will begin by giving a broad survey of the

historical results in this area, including studies done on the expected number of real

zeros, the expected number of level crossings, and various results on the distribution

of the complex zeros. Additionally, we will also mention a result pertaining to the

zeros of random orthogonal polynomials, as well as introduce some of the important

concepts needed for our later work. The remaining four chapters will then be devoted

to original research studying the aforementioned properties of random polynomial

zeros. Chapter 2 discusses the expected number of real zeros of random polynomi-

als with dependent coefficients, while Chapter 3 will discuss the expected number of

K-level crossings. Chapter 4 will focus on the complex zeros of random polynomi-

als, again with dependent coefficients, while also discussing an application of random

polynomials to wireless communications. Lastly, Chapter 5 will contain a result on

the distribution of the complex zeros of random polynomials that are composed of

sums of orthogonal polynomials.

2



Chapter 1

Historical Results and Background

This chapter will be divided into several sections as follows. After starting with some

preliminary definitions and notation, we will discuss several results on the expected

number of real zeros for various types of random polynomials. This will include

several results for independent coefficients, as well as the two main historical results

for dependent coefficients. From here, we will move on to a couple of results on K-

level crossings, followed by several important works on the distribution of the complex

zeros. Next, we will discuss the work of Shiffman and Zelditch [29] on random sums

of orthogonal polynomials, which will be fundamental to our result in Chapter 5.

Finally, our last section will introduce several of the tools and concepts that will be

needed in subsequent chapters.

1.1 Definitions/Notation

Throughout this work, we will assume that our random polynomial, Pn(x), has the

form given in (1). To emphasize the differences in the situations, we will refer to our

polynomial as Pn(x) in general or when focusing on the real zeros, while using Pn(z)

when referring specifically to the complex zeros. Also, for any given set Ω ∈ C, we

will define νn(Ω) to be the number of zeros of Pn(x) in the set Ω. When dealing with

zeros on the real line, we will use the more standard notation N(α, β) to represent the

zeros of Pn(x) on the interval (α, β). Similarly, NK(α, β) will represent the number

3



of K-level crossings on the interval (α, β).

1.2 Real Zeros

1.2.1 Independent Coefficients

One of the earliest results in the study of zeros of random polynomials is due to J.E.

Littlewood and A.C. Offord in 1938 [18]. They considered three main cases of inde-

pendent coefficients: those with a uniform distribution on (−1, 1), a standard normal

distribution, or a distribution taking the values of 1 and −1 with equal probability.

While no explicit values for the expected number of real zeros were given, some upper

bounds were obtained. It was shown that in the three main cases mentioned above,

the expected number of real zeros is at most 25(log n)2 +12 log n. This is an interest-

ing result because of the low value of the upper bound. Since a polynomial of degree

n has at most n real zeros, it is slightly surprising that the expected number of real

zeros can be bounded above by such a low asymptotic value.

The next major result (at least for our purposes) came from Mark Kac in 1943 [16].

Under the assumption that the coefficients are independent standard normals, Kac

showed that the expected number of real zeros is on the order of 2
π

log n, as n →∞.

This result is noteworthy not only because it is one of the first (if not the first) explicit

calculations of a random polynomial’s expected number of real zeros, but also because

it makes use of the Kac-Rice formula, which is a formula for computing a random

polynomial’s expected number of real zeros, in its earliest form. Using this formula,

Kac proved that the expected number of real zeros on any interval (α, β) is given by

(1.1) E [N(α, β)] =
1

π

∫ β

α

(x4n − n2x2(n+1) + 2(n2 − 1)x2n − n2x2(n−1) + 1)1/2

(x2 − 1)2(1 + x2 + x4 + . . . + x2n−2)
dx,

from which the above estimate is derived.

Now, from the formula above, it can be seen that the zeros tend to accumulate

around -1 and 1. Before moving on, it may be useful to give some intuition into this

behavior of the zeros. To see one possible reason for this, consider the polynomial

f(x) = a0 + a1x + a2x
2 + · · ·+ anx

n, |ai| = 1.

4



If x ∈ [−1
2
, 1

2
], the a0 term will dominate, and there will be no zeros. Similarly, if

x ∈ [2,∞) or x ∈ (−∞,−2], the anx
n term will dominate, and there will also be

no zeros. So, for this example, the only possible zeros are in the intervals (1
2
, 2) and

(−2,−1
2
), which is somewhat similar to the behavior exhibited by the polynomials

Kac studied. Additionally, since the coefficients of the polynomials studied by Kac

are symmetrically distributed with mean zero, values of x near 1 and -1 would make

it easiest to have cancellation between the terms, hence producing zeros. Thus, given

these details, the behavior of the zeros is not as surprising as it might appear at first

glance.

At this point the contributions of Rice should be mentioned. About the same time

that Kac was working on the previously mentioned problem, S.O. Rice was working

on problems related to stochastic noise. In the course of this work he independently

developed a formula similar to Kac’s for computing the expected number of real zeros

of a random polynomial [20]. For this reason, the formula is credited to both of them

and is now known as the “Kac-Rice” formula.

In 1955 Erdös and Offord [10] studied a class of random polynomials where the

coefficients are either 1 or -1 with equal probability. Their result showed that the

number of zeros in this case is also on the order of 2
π

log n, for most of the equa-

tions. That is, the estimate holds except for on a small proportion of the total set of

equations. This paper is important for our purposes because it develops a number of

techniques which are later used by Sambandham. Sambandham, whose work will be

discussed in the next section, employed these techniques in his study of random poly-

nomials with dependent standard normal coefficients, where the covariance function

is exponentially decaying.

Another result worth mentioning came from Edelman and Kostlan in 1995 [9].

They considered, like Kac, random polynomials with independent standard normal

coefficients. They computed the expected number of real zeros and, again like Kac,

derived the same estimate. However, Edelman and Kostlan used a geometric approach

which was original and very different from any previous method. They considered the

joint density function for a sequence of n standard normal random variables, which has

5



the form 1
(2π)n/2 e

− 1
2
v·v, where v ∈ Rn+1. In the case of independent standard normals,

the density becomes a function of the radius alone. If the radius is restricted to be 1,

the values of this sequence of random variables are uniformly distributed on the unit

sphere in Rn+1. Defining the curve x(t) = [1, t, t2, . . . , tn]T , it follows that ∀v ∈ Rn+1,

v ·x(t) is a realization of the random polynomial Pn(t). Furthermore, this polynomial

will have a zero when v ⊥ x(t), for some t ∈ R. By calculating the area on the sphere

of the points which are orthogonal to x(t) for some t, and then dividing by the total

area of the sphere, Edelman and Kostlan were able to derive Kac’s formula for the

expected number of zeros.

1.2.2 Dependent Coefficients

Once estimates are obtained for the independent standard normal case, an interesting

next step is to analyze the behavior of the zeros when some dependence is assumed

among the coefficients. The main work done for dependent standard normals can

be divided into two cases. The first assumes that the coefficients have a constant

covariance, ρ, where ρ ∈ (0, 1). Under these assumptions, it has been shown that the

expected number of real zeros is on the order of 1
π

log n, or half of that in the indepen-

dent case. Sambandham first studied this situation in 1976 [23], but a later result of

his own contradicted his initial findings [25]. Later work by Miroshin [19] confirmed

the validity of Sambandham’s second result, which gave the correct estimate above.

The second case assumes the coefficients have an exponentially decaying covari-

ance, which was considered by Sambandham in 1977 [24]. That is, letting X0, X1, . . .

be a stationary sequence of standard normal random variables, the covariance func-

tion is given by

E [XiXj] = ρ|i−j|.

When 0 < ρ < 1/2, Sambandham showed that the expected number of real zeros is

on the order of 2
π

log n. This result matches the value obtained in the independent

case.

It is interesting to note some of the possible explanations that appear in the

6



literature for these differing expected values. The first noticeable result is that the

same estimate holds for the expected number of zeros in the independent case and

the dependent case where the coefficients are exponentially correlated. A reasonable

explanation for this is that the correlation between the coefficients is dying out at a

fast enough rate (exponentially fast) to make them behave as if they are independent,

resulting in a similar amount of zeros. On the other hand, there are half as many

expected zeros in the dependent case with constant positive correlation. In this

situation, because of the constant correlation, it is reasonable to expect that most of

the coefficients would be of the same sign. If a polynomial has coefficients of all the

same sign, the only possible zeros would be on the negative real line. This makes

the expected number of zeros on the positive real line negligible, resulting in half the

number of expected zeros as in the previous two cases.

A further direction of research motivated by these ideas is to try and identify at

what point this result changes; that is, can we identify some critical rate of decay for

the correlation function at which the expectation changes. We know if the covariance

decays fast enough, the coefficients exhibit independent behavior. If the covariance

has no decay, we have half as many zeros. Between these extremes it would be

interesting to see what other types of behavior happens, and what properties of the

covariance functions lead to this behavior. These questions are what motivated the

work in Chapter 2.

One additional simple, yet interesting, case is when the coefficients have a constant

covariance of 1. By using the Kac-Rice formula, it can be shown that the expected

number of zeros is on the order of a constant. However, by performing the simple

calculation

E
[
(Xi −Xj)

2
]

= E
[
X2

i

]
+ E

[
X2

j

]
− 2E [XiXj] = 2− 2 = 0, i 6= j,

it follows that Xi = Xj a.e. for any i, j. Thus, the only possible zero of this polynomial

would be -1, and only when n is odd.

7



1.3 K-Level Crossings

Consider the problem of computing the expected number of real zeros of the equation

Pn(x) = K, where K is a given constant. These zeros are otherwise known as the

K-level crossings of Pn(x). When studying such crossings, two main situations are

usually considered. The first assumes K is bounded, while in the second K is allowed

to grow along with n. Two important works in this area are due to Farahmand.

For independent standard normal coefficients and K bounded, Farahmand [11]

showed that the total expected number of K-level crossings on (−∞,∞) is on the

order of 2
π

log n, which is the same result as for the real zeros. However, a curious

behavior is exhibited when K is allowed to grow with n. Assuming K = o (
√

n),

the expected number of crossings on the interval (−1, 1) is reduced. Specifically,

Farahmand showed that

E [NK(−1, 0)] = E [NK(0, 1)] ∼ 1

2π
log n, for K bounded,

E [NK(−1, 0)] = E [NK(0, 1)] ∼ 1

2π
log
( n

K2

)
, for K = o

(√
n
)
,

and

E [NK(−∞,−1)] = E [NK(1,∞)] ∼ 1

2π
log n.

In a later paper Farahmand [12] studied the K-level crossings for Pn(x) when the

coefficients are dependent standard normals, with a constant covariance ρ ∈ (0, 1).

Here, just as in the case of the real zeros, the number of level crossings is cut in half.

The constant covariance causes the number of real crossings to be reduced drastically.

Farahmand’s result is given as

E [NK(−1, 1)] ∼ 1

2π
log n, for K bounded,

E [NK(−1, 1)] ∼ 1

2π
log
( n

K2

)
, for K = o

(√
n

log n

)
,

E [NK(−∞,−1)] + E [NK(1,∞)] ∼ 1

2π
log n.

As in the independent case, there are also less crossings on (−1, 1) when K is allowed

to grow with n.

8



1.4 Complex Zeros

The first result in this area worth mentioning is due to Hammersley in 1956 [14]. In his

classic paper, Hammersley studied the distribution of zeros for random polynomials

with either real or complex Gaussian coefficients. He became interested in the problem

when asked a question concerning the growth rates of an insect population. His

task was to evaluate the zeros of polynomials whose coefficients were determined by

experimental data. While, in his own words, he was not able to fully solve the problem

given to him, he was able to derive explicit density functions for the distributions of

the zeros. One fundamental result that can be shown by applying his formulas is that

the zeros of random polynomials with independent complex Gaussian coefficients,

having mean zero and variance one, tend to concentrate on the unit circle in the

complex plane. Additionally, in his work Hammersley also succeeded in producing a

more detailed version of Kac’s result.

In 1995 Shepp and Vanderbei [28] studied more closely the complex zeros of ran-

dom polynomials with independent standard normal coefficients. Using the argument

principle, they derived a formula for computing the expected number of zeros in any

measurable subset of the complex plane. Applying this formula, they then were able

to prove several results about the distribution of the complex zeros. This included

showing that the zeros tend to accumulate around the unit circle in the limit, and

that they do so uniformly in the angle. Our work in Chapter 4 will be based on their

techniques.

The last result on complex zeros that we will mention comes from Hughes and

Nikeghbali in 1998 [15]. In their work, Hughes and Nikeghbali were able to show

that under very general assumptions on the coefficients of Pn(z), the same behav-

ior observed by Shepp and Vanderbei will hold. That is, the zeros will accumulate

around the unit circle in the limit, and they will do so uniformly in the angle. As a

specific case, their result holds for Gaussian coefficients, with no restrictions on the

dependence among the coefficients.
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1.5 Random Sums of Orthogonal Polynomials

One last topic that we will cover concerns the zeros of random sums of orthogonal

polynomials. These are polynomials of the form

Pn(x) =
n∑

k=0

Zkpk(x),

where Z0, Z1, . . . is a sequence of independent complex Gaussians, with mean zero and

variance one, and p0, p1, . . . represents a set of orthonormal polynomials. For a given

set of orthonormal polynomials orthogonalized over a suitable domain Ω, and with

a weight function satisfying certain restrictions, Shiffman and Zelditch [29] showed

that the limiting distribution of zeros is given by the equilibrium measure for the set

Ω. We will formulate this result in more detail in Chapter 5.

1.6 Background Material

1.6.1 Spectral Density

We will now discuss some results that are variously attributed to Bochner, Herglotz,

and Khinchine (see [5, 7]). Given a stationary sequence of Gaussian random variables,

X0, X1, . . ., the covariance function, Γ(k), can be expressed as

E [X0Xk] = Γ(k) =

∫ π

−π

e−ikφF (dφ),

where F (φ) is real, never-decreasing, and bounded. Furthermore, if F (φ) is also

absolutely continuous, we have the formula

(1.2) Γ(k) =

∫ π

−π

e−ikφf(φ)dφ,

where f(φ) is called the spectral density of the covariance function.

A sufficient condition for the existence of f(φ) is that Γ(k) is absolutely summable.

Additionally, in this case it will be non-negative, continuous, and of the form

(1.3) f(φ) =
1

2π

∞∑
k=−∞

Γ(k)eikφ.

10



One example where the spectral density can be explicitly computed is in the case of

an exponentially decaying covariance; that is, Γ(k) = ρ|k|, where ρ ∈ (0, 1). Here, the

spectral density will have the form

(1.4) f(φ) =
1

2π

1− ρ2

1− 2ρ cos φ + ρ2
.

This formulation of the covariance function using the spectral density will prove

crucial for the majority of the results in this dissertation. Whenever some dependence

is assumed among the coefficients of a random polynomial, it is highly likely that the

ensuing computations will be more involved than in the independent case. For certain

covariance functions, such as the constant and the exponentially decaying cases, there

are ways of getting around this difficulty. For many other examples, however, this

is not easily done. It is here that the spectral density will allow us to make the

needed computations, and to derive the necessary asymptotic values. Furthermore,

since we will only make some general assumptions on the spectral density, the results

will also hold for a wide class of covariance functions. To shed a little more light on

the behavior of the spectral density, we have included several graphs of the spectral

density for various choices of Γ(k) in Appendix A.

1.6.2 Kac-Rice Formula

One other result that will be important for our work is the modern formulation of

the Kac-Rice formula. For Pn(x), define

A(x) := E [P 2
n(x)] , K(x) := E [Pn(x)] ,

B(x) := E [Pn(x)P ′
n(x)] , K ′(x) := E [P ′

n(x)] ,

C(x) := E
[
(P ′

n(x))2] .
We then have

Theorem 1.6.1 (Kac-Rice Formula). For Pn(x), on a given interval (α, β) we have

E [N(α, β)] =
1

π

∫ β

α

√
AC −B2

A
exp

(
−K2C + K ′2A− 2K ′KB

2 (AC −B2)

)
dx

+
1

π

∫ β

α

√
2|K ′A2 −BK|

A3/2
exp

(
−K2

2A

)
erf

(
|K ′A−BK|√
2A (AC −B2)

)
dx.

11



For a derivation see [13]. We will use the Kac-Rice formula for our work on the

real zeros in Chapter 2, and the K-level crossings in Chapter 3.
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Chapter 2

Real Zeros

From Section 1.6.1 we have seen that the behavior of the real zeros changes when

a constant covariance is assumed among the coefficients. On the other hand, the

behavior stays the same for an exponentially decaying covariance. A further question

that could be asked is whether or not this result extends to a wider class of covariance

functions, where the decay rates are between those considered by Sambandham. This

chapter will be concerned with computing the expected number of real zeros of Pn(x)

for a general class of covariance functions.

2.1 Statement of Main Result

In what follows, we will show that, assuming the spectral density is both positive and

continuous, the same asymptotic value for the expected number of real zeros holds

as in the independent case. If we assume further that the spectral density has one

continuous derivative, we will be able to derive an explicit value for the order of the

error term. Noting that absolute summability of the covariance function guarantees

the continuity of the spectral density, we will then see that behavior similar to the

independent case can be expected for covariance functions with a wide range of decay

rates. Let C ([−π, π]) be the set of continuous functions on [−π, π], while C1 ([−π, π])

denotes the set of functions on [−π, π] with one continuous derivative. The main result

is then stated as follows.

13



Theorem 2.1.1. Let Pn(x) be the polynomial given in (1), where the coefficients

X0, X1, . . . form a stationary sequence of standard normals, with covariance function

Γ(k) and spectral density f(φ). Assume that the spectral density does not vanish.

Letting N(α, β) be the number of zeros of Pn(x) in the interval (α, β), it follows that

E[N(−∞,∞)] ∼ 2

π
log n, for f ∈ C ([−π, π]),

E[N(−∞,∞)] =
2

π
log n + O (log log n) , for f ∈ C1 ([−π, π]),

as n →∞.

2.2 Deriving Upper Bounds

Before we proceed any further, a comment must be made. If we consider the function

xnPn

(
1

x

)
= xn

(
X0 + X1

1

x
+ · · ·+ Xn

1

xn

)
= X0x

n + X1x
n−1 + · · ·+ Xn,

it can be seen that whenever there is a zero of xnPn

(
1
x

)
in (1,∞), there is also a zero

of Pn(x) in (0, 1). Thus, since the distributions of the zeros of the two functions are

the same, it is sufficient to only look at the interval from (0, 1). A similar argument

works for the negative real line and allows us to restrict our analysis to the interval

(−1, 1). By then taking twice the result, we will have a value for the total expected

number of real zeros.

Our proof will loosely follow that of Sambandham, with some necessary mod-

ifications to account for the more general assumptions made on the coefficients.

The first step is to show that there is a negligible amount of zeros on the inter-

vals (0, 1− 1
log n

), (1− log log n
n

, 1), (−1+ 1
log n

, 0), and (−1,−1+ log log n
n

). Following this,

we will then show that the number of real zeros in the intervals (1− 1
log n

, 1− log log n
n

)

and (−1 + log log n
n

,−1 + 1
log n

) are each on the order of 1
2π

log n. One significant dif-

ference from Sambandham’s work is that rather than approximating the number of

14



zeros with a specially chosen function, we will instead derive the asymptotic behav-

ior directly from the Kac-Rice formula using the spectral density formulation of the

covariance function. The result is that the number of zeros in (−1, 1) is on the order

of 1
π

log n and, from the comments above, it follows that the total expected number

of real zeros is on the order of 2
π

log n.

Now, recalling that N(α, β) is the number of zeros of Pn(x) in the interval (α, β),

the Kac-Rice formula [13] gives the expected number of zeros on this interval as

(2.1) E[N(α, β)] =
1

π

∫ β

α

√
AC −B

A
dx,

where

A(x) = E
[
P 2

n(x)
]

=
n∑

k=0

n∑
j=0

Γ(k − j)xk+j,

B(x) = E [Pn(x)P ′
n(x)] =

n∑
k=0

n∑
j=0

Γ(k − j)kxk+j−1,

C(x) = E
[
(P ′

n(x))2
]

=
n∑

k=0

n∑
j=0

Γ(k − j)kjxk+j−2.

Applying (1.2) we can rewrite these as

A =

∫ π

−π

n∑
k=0

n∑
j=0

e−i(k−j)φxk+jf(φ)dφ,

B =

∫ π

−π

n∑
k=0

n∑
j=0

e−i(k−j)φkxk+j−1f(φ)dφ,

C =

∫ π

−π

n∑
k=0

n∑
j=0

e−i(k−j)φkjxk+j−2f(φ)dφ.

We are now ready to prove our first lemma.

Lemma 2.2.1. For the intervals (−1,−1 + log log n
n

), (−1 + 1
log n

, 0), (0, 1− 1
log n

), and

(1− log log n
n

, 1), the expected number of zeros is O(log log n).
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Proof. Following the method of Sambandham, we will define the function

H(x, y) =
n∑

k=0

n∑
j=0

e−i(k−j)φxkyj

=
n∑

k=0

e−ikφxk

n∑
j=0

eijφyj

=
1− xn+1e−i(n+1)φ

1− xe−iφ
· 1− yn+1ei(n+1)φ

1− yeiφ
,

to assist in our computations. Plugging into our formula for A leads to the expression

A =

∫ π

−π

H(x, x)f(φ)dφ

=

∫ π

−π

1− xn+1e−i(n+1)φ

1− xe−iφ
· 1− xn+1ei(n+1)φ

1− xeiφ
f(φ)dφ.

(2.2)

Similarly,

B =

∫ π

−π

[
∂H(x, y)

∂y

]
y=x

f(φ)dφ

=

∫ π

−π

(
1− xn+1e−i(n+1)φ

1− xe−iφ

)
·

(
−(n + 1)xnei(n+1)φ

(
1− xeiφ

)
−
(
1− xn+1ei(n+1)φ

) (
−eiφ

)
(1− xeiφ)2

)
f(φ)dφ,

(2.3)

and

C =

∫ π

−π

[
∂2H(x, y)

∂x∂y

]
y=x

f(φ)dφ

=

∫ π

−π

(
−(n + 1)xne−i(n+1)φ

(
1− xe−iφ

)
−
(
1− xn+1e−i(n+1)φ

) (
−e−iφ

)
(1− xe−iφ)2

)

·

(
−(n + 1)xnei(n+1)φ

(
1− xeiφ

)
−
(
1− xn+1ei(n+1)φ

) (
−eiφ

)
(1− xeiφ)2

)
f(φ)dφ.

(2.4)

For x ∈ (0, 1− 1
log n

) we have

A ∼
∫ π

−π

1

(1− xe−iφ)(1− xeiφ)
f(φ)dφ,

and

C ∼
∫ π

−π

1

(1− xe−iφ)2(1− xeiφ)2
f(φ)dφ
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≤ 1

(1− x)2

∫ π

−π

1

(1− xe−iφ)(1− xeiφ)
f(φ)dφ.

If we consider the quotient
√

AC−B2

A
, then

√
AC −B2

A
<

(
C

A

)1/2

≤ 1

1− x
.

Plugging into (2.1), it follows that

E

[
N

(
0, 1− 1

log n

)]
=

∫ 1− 1
log n

0

√
AC −B2

A
dx

≤
∫ 1− 1

log n

0

1

1− x
dx

= log log n.

(2.5)

Thus,

E

[
N

(
0, 1− 1

log n

)]
= O (log log n) .

To handle the interval (−1 + 1
log n

, 0) we will substitute in −x, where

x ∈ (0, 1− 1
log n

), to get

A =

∫ π

−π

H(−x,−x)f(φ)dφ

=

∫ π

−π

1− (−x)n+1e−i(n+1)φ

1 + xe−iφ
· 1− (−x)n+1ei(n+1)φ

1 + xeiφ
f(φ)dφ

∼
∫ π

−π

1

(1 + xe−iφ)(1 + xeiφ)
f(φ)dφ.

Likewise,

C ∼
∫ π

−π

1

(1 + xe−iφ)2 (1 + xeiφ)2f(φ)dφ

≤ 1

(1− x)2

∫ π

−π

1

(1 + xe−iφ) (1 + xeiφ)
f(φ)dφ.

Considering the quotient
√

AC−B2

A
once more gives us

√
AC −B2

A
<

(
C

A

)1/2

≤ 1

1− x
,
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just as before. Applying (2.1), we then have

E

[
N

(
−1 +

1

log n
, 0

)]
=

∫ 0

−1+ 1
log n

√
AC −B2

A
dx

≤
∫ 1− 1

log n

0

1

1− x
dx

= log log n.

(2.6)

Thus,

E

[
N

(
−1 +

1

log n
, 0

)]
= O (log log n) .

Finally, we will consider the intervals (−1,−1 + log log n
n

) and (1 − log log n
n

, 1). For

x ∈ (1− log log n
n

, 1) we have the inequality

√
AC −B2

A
<

(
C

A

)1/2

<

(
n2
∑n

k=0

∑n
j=0 Γ(k − j)xk+j−2

x2
∑n

k=0

∑n
j=0 Γ(k − j)xk+j−2

)1/2

< cn.

Thus,

E

[
N

(
1− log log n

n
, 1

)]
=

∫ 1

1− log log n
n

√
AC −B2

A
dx

≤
∫ 1

1− log log n
n

cndx

= O(log log n).

(2.7)

For (−1,−1 + log log n
n

) we will substitute in −x. Notice that since f(φ) is continuous

and non-zero on [−π, π], we can bound it from below by a constant m
2π

> 0. We then

have

A ≥ m

2π

∫ π

−π

1− (−x)n+1e−i(n+1)φ

1 + xe−iφ
· 1− (−x)n+1ei(n+1)φ

1 + xeiφ
dφ

= m

n∑
k=0

(−x)2k,
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since f(φ) ≡ 1
2π

in the independent case. Similarly, we can bound f(φ) from above

by M
2π

< ∞. This yields the inequality

C ≤ M

2π

∫ π

−π

−(n + 1)(−x)ne−i(n+1)φ
(
1 + xe−iφ

)
+
(
1− (−x)n+1e−i(n+1)φ

)
e−iφ

(1 + xe−iφ)2

·
−(n + 1)(−x)nei(n+1)φ

(
1 + xeiφ

)
+
(
1− (−x)n+1ei(n+1)φ

)
eiφ

(1 + xeiφ)2
dφ.

= M
n∑

k=0

k2(−x)2k−2

≤ M
n2

(−x)2

n∑
k=0

(−x)2k.

It follows that

√
AC −B2

A
<

(
C

A

)1/2

≤
(

Mn2

mx2

)1/2

< cn.

Thus,

E

[
N

(
−1,−1 +

log log n

n

)]
=

∫ −1+ log log n
n

−1

√
AC −B2

A
dx

≤
∫ 1

1− log log n
n

cndx

= O(log log n).

(2.8)

Combining (2.5)-(2.8), the result then follows.

2.3 Computing Zeros on (−1, 1)

Now that we have found an upper bound for the expected number of zeros in our

initial four intervals, we will spend the rest of our time deriving explicit values for the

intervals (−1 + log log n
n

,−1 + 1
log n

) and (1 − 1
log n

, 1 − log log n
n

). As stated before, this

will be done by deriving asymptotic values for the expressions given in (2.1). We will

formulate this result as an additional lemma.
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Lemma 2.3.1. The expected number of zeros for the polynomial Pn(x) in each of the

intervals (−1+ log log n
n

,−1+ 1
log n

) and (1− 1
log n

, 1− log log n
n

) is given by the following:

(i) For f ∈ C ([−π, π]),

E

[
N

(
−1 +

log log n

n
,−1 +

1

log n

)]
= E

[
N

(
1− 1

log n
, 1− log log n

n

)]
∼ 1

2π
log n.

(ii) For f ∈ C1 ([−π, π]),

E

[
N

(
−1 +

log log n

n
,−1 +

1

log n

)]
= E

[
N

(
1− 1

log n
, 1− log log n

n

)]
=

1

2π
log n + O (log log n) .

Proof. Consider the interval (1− 1
log n

, 1− log log n
n

). For x = 1−y, define g(y) = y log n
log log n

.

Also, let M > 0 be chosen such that f(φ) ≤ M , for any φ ∈ [−π, π]. Recalling (2.1),

for A we have

A =

∫ π

−π

1

(1− xe−iφ)(1− xeiφ)
f(φ)dφ

+ xn+1

∫ π

−π

−
(
e−i(n+1)φ + ei(n+1)φ

)
+ xn+1

(1− xe−iφ)(1− xeiφ)
f(φ)dφ

= A1 + O
(
xn+1A1

)
.

(2.9)

Our next step is to determine the asymptotic value for A1. We have,

A1 = 2

∫ g(y)

0

1

1− 2x cos φ + x2
f(φ)dφ + 2

∫ π

g(y)

1

1− 2x cos φ + x2
f(φ)dφ.

Looking at the first integral yields

= 2

∫ g(y)

0

f(φ)

1− 2(1− y)
(
1− φ2

2
+ O (φ4)

)
+ (1− y)2

dφ

= 2

∫ g(y)

0

f(φ)

φ2 + y2 − yφ2 + O (φ4)
dφ

= 2

∫ g(y)

0

f(φ)

φ2 + y2
dφ + O(1).

20



For f ∈ C ([−π, π]) this becomes

∼ 2

∫ g(y)

0

f(0)

φ2 + y2
dφ

=
2f(0)

y
arctan

(
g(y)

y

)
,

while for f ∈ C1 ([−π, π]) we have the more detailed representation

= 2

∫ g(y)

0

f(0) + f ′(φ0)φ

φ2 + y2
dφ + O(1), (where φ0 ∈ (0, φ))

=
2f(0)

y
arctan

(
g(y)

y

)
+ O

(∫ g(y)

0

φ

φ2 + y2
dφ

)

=
2f(0)

y
arctan

(
g(y)

y

)
+ O (log log n) .

For the second integral in A1,

=

∫ (g(y))1/3

g(y)

2

1− 2x cos φ + x2
f(φ)dφ +

∫ π

(g(y))1/3

2

1− 2x cos φ + x2
f(φ)dφ

∼
∫ (g(y))1/3

g(y)

2f(0)

y2 + φ2
dφ +

∫ π

(g(y))1/3

2

1− 2x cos φ + x2
f(φ)dφ

≤
∫ (g(y))1/3

g(y)

2f(0)

φ2
dφ +

∫ π

(g(y))1/3

2M

1− 2x cos ((g(y))1/3) + x2
dφ

∼ 2f(0)

(
1

g(y)
− 1

(g(y))1/3

)
+

2Mπ

(g(y))2/3 + y2

= O

(
1

g(y)

)
.

It follows that

A1 ∼
2f(0)

y
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

A1 =
2f(0)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)
, for f ∈ C1 ([−π, π]).

Now, notice that

xn+1A1 ∼ (1− y)n+1 c

y

≤
(

1− log log n

n

)n+1
c

y
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∼ c

y log n

= o

(
1

g(y)

)
.

Combining these results and plugging into (2.9) yields

A ∼ 2f(0)

y
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

A =
2f(0)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)
, for f ∈ C1 ([−π, π]).

(2.10)

Considering B next,

B =

∫ π

−π

eiφ

(1− xe−iφ)(1− xeiφ)2
f(φ)dφ

+

∫ π

−π

−(n + 1)xnei(n+1)φ
(
1− xeiφ

)
(1− xe−iφ)(1− xeiφ)2

f(φ)dφ

+ xn+1

∫ π

−π

(n + 1)xn
(
1− xeiφ

)
− e−inφ

(
1− xn+1ei(n+1)φ

)
− ei(n+2)φ

(1− xe−iφ)(1− xeiφ)2
f(φ)dφ

= B1 + B2 + O
(
xn+1 (|B1|+ |B2|)

)
.

Since we will end up showing that the B1 term dominates, we can rewrite this as

(2.11) B = B1 + B2 + O
(
xn+1B1

)
.

To analyze B1 we will split it into two integrals,

B1 = 2

∫ g(y)

0

cos φ− 1 + y

(1− 2(1− y) cos φ + (1− y)2)2f(φ)dφ

+ 2

∫ π

g(y)

cos φ− 1 + y

(1− 2(1− y) cos φ + (1− y)2)2f(φ)dφ.

For the first integral we have

= 2

∫ g(y)

0

y − φ2

2
+ O (φ4)(

1− 2(1− y)
(
1− φ2

2
+ O (φ4)

)
+ (1− y)2

)2f(φ)dφ

= 2

∫ g(y)

0

y

(φ2 + y2 − yφ2 + O (φ4))2f(φ)dφ + O

(
1

y

)
= 2

∫ g(y)

0

y

(φ2 + y2)2f(φ)dφ + O

(
1

y

)
.
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For f ∈ C ([−π, π]) this becomes

∼ 2

∫ g(y)

0

yf(0)

(φ2 + y2)2dφ

=
f(0)

y2

[
g(y)y

g2(y) + y2
+ arctan

(
g(y)

y

)]
∼ f(0)

y2
arctan

(
g(y)

y

)
,

while for f ∈ C1 ([−π, π])

= 2

∫ g(y)

0

yf(0) + yf ′(φ0)φ

(φ2 + y2)2 dφ + O

(
1

y

)
(where φ0 ∈ (0, φ))

=
f(0)

y2

[
φy

φ2 + y2
+ arctan

(
φ

y

)]∣∣∣∣g(y)

0

+ O

(∫ g(y)

0

yφ

(φ2 + y2)2dφ +
1

y

)

=
f(0)

y2

[
g(y)y

g2(y) + y2
+ arctan

(
g(y)

y

)]
+ O

(
1

y

)
=

f(0)

y2
arctan

(
g(y)

y

)
+ O

(
1

yg(y)

)
.

For the second integral in B1,∣∣∣∣2∫ π

g(y)

cos φ− x

(1− 2x cos φ + x2)2
f(φ)dφ

∣∣∣∣
≤ 2

∫ (g(y))1/3

g(y)

|cos φ− x| f(φ)

(1− 2x cos φ + x2)2
dφ + 2

∫ π

(g(y))1/3

|cos φ− x| f(φ)

(1− 2x cos φ + x2)2
dφ

∼ 2f(0)

∫ (g(y))1/3

g(y)

∣∣∣y − φ2

2
+ O (φ4)

∣∣∣
(φ2 + y2)2 dφ + 2

∫ π

(g(y))1/3

|cos φ− x| f(φ)

(1− 2x cos φ + x2)2
dφ

≤ 2f(0)

∫ (g(y))1/3

g(y)

y + φ2 + O (φ4)

φ4
dφ +

∫ π

(g(y))1/3

4M

(1− 2x cos (g(y))1/3 + x2)2
dφ

∼ 2f(0)y

3

(
1

(g(y))3
− 1

g(y)

)
+ 2f(0)

(
1

g(y)
− 1

(g(y))1/3

)
+

4πM

(g(y))4/3

= O

(
y

(g(y))3

)
.

Thus,

B1 ∼
f(0)

y2
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

B1 =
f(0)

y2
arctan

(
g(y)

y

)
+ O

(
1

yg(y)

)
, for f ∈ C1 ([−π, π]).
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For B2 we have,

B2 =

∣∣∣∣∫ π

−π

−(n + 1)xnei(n+1)φ(1− xeiφ)

(1− xe−iφ)(1− xeiφ)2
f(φ)dφ

∣∣∣∣
≤
∫ π

−π

(n + 1)xn

(1− xe−iφ)(1− xeiφ)
f(φ)dφ

∼ c(n + 1)
(1− y)n

y
,

where the last line follows from our work on A. Now, notice that for y = log log n
n

we

have

(n + 1)
(1− y)n

y
∼ n2

log n log log n
=

1

yg(y)
.

Since (1 − y)ny is a decreasing function as y increases, it follows that for y ∈

( log log n
n

, 1
log n

),

(2.12) (n + 1)(1− y)ny ≤ y

g(y)
⇒ (n + 1)

(1− y)n

y
= O

(
1

yg(y)

)
.

This also implies that

xn+1(B1 + B2) ∼ c
(1− y)n+1

y2

< c(n + 1)
(1− y)n+1

y
.

Thus,

B ∼ f(0)

y2
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

B =
f(0)

y2
arctan

(
g(y)

y

)
+ O

(
1

yg(y)

)
, for f ∈ C1 ([−π, π]).

(2.13)

Turning now to C,

C =

∫ π

−π

1

(1− xe−iφ)2(1− xeiφ)2
f(φ)dφ +

∫ π

−π

(n + 1)2x2n

(1− xe−iφ)(1− xeiφ)
f(φ)dφ

+ 2

∫ π

−π

−(n + 1)xne−inφ
(
1− xn+1ei(n+1)φ

)
(1− xe−iφ)(1− xeiφ)2

f(φ)dφ

+ xn+1

∫ π

−π

−
(
e−i(n+1)φ + ei(n+1)φ

)
+ xn+1

(1− xe−iφ)2(1− xeiφ)2
f(φ)dφ
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= C1 + C2 + C3 + O
(
xn+1C1

)
.

Splitting up C1 gives us

C1 = 2

∫ g(y)

0

1

(1− 2x cos φ + x2)2
f(φ)dφ + 2

∫ π

g(y)

1

(1− 2x cos φ + x2)2
f(φ)dφ.

(2.14)

For the first term we have

= 2

∫ g(y)

0

1(
1− 2(1− y)

(
1− φ2

2
+ O (φ4)

)
+ (1− y)2

)2f(φ)dφ

= 2

∫ g(y)

0

1

(φ2 + y2 − yφ2 + O (φ4))2f(φ)dφ

= 2

∫ g(y)

0

f(φ)

(φ2 + y2)2dφ + O

(
1

y2

)
.

For f ∈ C ([−π, π]) it follows that

∼ 2

∫ g(y)

0

f(0)

(φ2 + y2)2dφ

=
f(0)

y3

[
g(y)y

g2(y) + y2
+ arctan

(
g(y)

y

)]
∼ f(0)

y3
arctan

(
g(y)

y

)
,

while for f ∈ C1 ([−π, π])

= 2

∫ g(y)

0

f(0) + f ′(φ0)φ

(φ2 + y2)2 dφ + O

(
1

y2

)
, (where φ0 ∈ (0, φ))

=
f(0)

y3

[
φy

φ2 + y2
+ arctan

(
φ

y

)] ∣∣∣∣g(y)

0

+ O

(∫ g(y)

0

φ

(φ2 + y2)2dφ +
1

y2

)

=
f(0)

y3

[
g(y)y

g2(y) + y2
+ arctan

(
g(y)

y

)]
+ O

(
1

y2

)
=

f(0)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)
.
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For the second integral in C1 we have

= 2

∫ (g(y))1/3

g(y)

f(φ)

(1− 2x cos φ + x2)2dφ + 2

∫ π

(g(y))1/3

f(φ)

(1− 2x cos φ + x2)2dφ

∼ 2f(0)

∫ (g(y))1/3

g(y)

1

(φ2 + y2)2dφ + 2

∫ π

(g(y))1/3

f(φ)

(1− 2x cos φ + x2)2dφ

≤ 2f(0)

∫ (g(y))1/3

g(y)

1

φ4
dφ + 2M

∫ π

(g(y))1/3

1

(1− 2x cos ((g(y))1/3) + x2)
2dφ

∼ 2f(0)

(
1

(g(y))3
− 1

g(y)

)
+

2Mπ

(g(y))4/3

= O

(
1

(g(y))3

)
.

Thus,

C1 ∼
f(0)

y3
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

C1 =
f(0)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)
, for f ∈ C1 ([−π, π]).

(2.15)

For C2,

C2 =

∫ π

−π

(n + 1)2x2n(1− xeiφ)(1− xe−iφ)

(1− xe−iφ)2(1− xeiφ)2
f(φ)dφ

∼ c(n + 1)2 (1− y)2n

y
,

while for C3 we have

|C3| ≤ c

∫ π

−π

∣∣∣∣ −(n + 1)xne−inφ

(1− xe−iφ)(1− xeiφ)2
f(φ)

∣∣∣∣ dφ

≤ c(C1C2)
1/2 (by Cauchy-Schwarz)

∼ c
(n + 1)(1− y)n

y2
.

Also, note that

xn+1C1 ∼ c
(1− y)n+1

y3
≤ (n + 1)(1− y)n

y2
.

From (2.12) we know that (n + 1)(1− y)n = O (1/g(y)), which implies

(n + 1)(1− y)n

y2
= O

(
1

y2g(y)

)
,

(n + 1)2(1− y)2n

y
= O

(
1

yg2(y)

)
.

(2.16)
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Thus, we can conclude that

C ∼ f(0)

y3
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

C =
f(0)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)
, for f ∈ C1 ([−π, π]).

(2.17)

Combining (2.10), (2.13), and (2.17), for f ∈ C ([−π, π]) we then have

√
AC −B2

A
∼

√
πf(0)

y
· πf(0)

2y3
−
(

πf(0)

2y2

)2(
πf(0)

y

)−1

=
1

2y
.

For f ∈ C1 ([−π, π]) this becomes

(2.18) AC −B2 =[
2f(0)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)][
f(0)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)]
−
[
f(0)

y2
arctan

(
g(n)

y

)
+ O

(
1

yg(y)

)]2

=
f 2(0)

y4

[
arctan

(
g(y)

y

)]2

+ O

(
1

y3g(y)

)
,

and

√
AC −B2

A
=

√
f2(0)

y4

[
arctan

(
g(y)

y

)]2
+ O

(
1

y3g(y)

)
2f(0)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)

=

√
f2(0)

y4

[
arctan

(
g(y)

y

)]2
+ O

(
1

y3g(y)

)
2f(0)

y
arctan

(
g(y)

y

) + O

(
1

g(y)

)

=
1

2y
+ O

(
1

g(y)

)
.

(2.19)

Plugging these into (2.1) gives us

E

[
N

(
1− 1

log n
, 1− log log n

n

)]
=

1

π

∫ 1− log log n
n

1− 1
log n

√
AC −B2

A
dx(2.20)
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∼ 1

π

∫ 1
log n

log log n
n

1

2y
dy

=
1

2π
log y

∣∣∣∣ 1
log n

log log n
n

∼ 1

2π
log n,

for f ∈ C ([−π, π]), and

E

[
N

(
1− 1

log n
, 1− log log n

n

)]
=

1

π

∫ 1− log log n
n

1− 1
log n

√
AC −B2

A
dx

=
1

π

∫ 1
log n

log log n
n

[
1

2y
+ O

(
1

g(y)

)]
dy

=
1

2π
log y

∣∣∣∣ 1
log n

log log n
n

+ O (log log n)

=
1

2π
log n + O (log log n) ,

(2.21)

for f ∈ C1 ([−π, π]).

To handle the interval from (−1 + log log n
n

,−1 + 1
log n

) we will substitute in −x =

−1 + y, where x ∈ (1− 1
log n

, 1− log log n
n

). We then have

A =

∫ π

−π

1− (−x)n+1e−i(n+1)φ

1 + xe−iφ
· 1− (−x)n+1ei(n+1)φ

1 + xeiφ
f(φ)dφ,

B =

∫ π

−π

(
1− (−x)n+1e−i(n+1)φ

1 + xe−iφ

)
·

(
−(n + 1)(−x)nei(n+1)φ

(
1 + xeiφ

)
+
(
1− (−x)n+1ei(n+1)φ

)
eiφ

(1 + xeiφ)2

)
f(φ)dφ,

and

C =

∫ π

−π

(
−(n + 1)(−x)ne−i(n+1)φ

(
1 + xe−iφ

)
+
(
1− (−x)n+1e−i(n+1)φ

)
e−iφ

(1 + xe−iφ)2

)

·

(
−(n + 1)(−x)nei(n+1)φ

(
1 + xeiφ

)
+
(
1− (−x)n+1ei(n+1)φ

)
eiφ

(1 + xeiφ)2

)
f(φ)dφ.
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Considering A first,

A =

∫ π

−π

1

(1 + xe−iφ)(1 + xeiφ)
f(φ)dφ

+ (−x)n+1

∫ π

−π

−
(
e−i(n+1)φ + ei(n+1)φ

)
+ (−x)n+1

(1 + xe−iφ)(1 + xeiφ)
f(φ)dφ

= A1 + O
(
(−x)n+1A1

)
.

(2.22)

Splitting up A1, we have

A1 = 2

∫ π

π−g(y)

1

1 + 2x cos φ + x2
f(φ)dφ + 2

∫ π−g(y)

0

1

1 + 2x cos φ + x2
f(φ)dφ

The first integral becomes

= 2

∫ π

π−g(y)

f(φ)

1 + 2(1− y)
(
−1 + (φ−π)2

2
+ O ((φ− π)4)

)
+ (1− y)2

dφ

= 2

∫ π

π−g(y)

f(φ)

(φ− π)2 + y2 − y(φ− π)2 + O ((φ− π)4)
dφ

= 2

∫ π

π−g(y)

f(φ)

(φ− π)2 + y2
dφ + O(1).

For f ∈ C ([−π, π]) this yields

∼ 2

∫ π

π−g(y)

f(π)

(φ− π)2 + y2
dφ

=
2f(π)

y
arctan

(
g(y)

y

)
,

while for f ∈ C1 ([−π, π]) we have

= 2

∫ π

π−g(y)

f(π) + f ′(φ0)(φ− π)

(φ− π)2 + y2
dφ + O(1), (where φ0 ∈ (π − φ, π))

=
2f(π)

y
arctan

(
g(y)

y

)
+ O

(∫ π

π−g(y)

φ− π

(φ− π)2 + y2
dφ

)
=

2f(π)

y
arctan

(
g(y)

y

)
+ O (log log n) .

For the second integral in A1,

=

∫ π−g(y)

π−(g(y))1/3

2

1 + 2x cos φ + x2
f(φ)dφ +

∫ π−(g(y))1/3

0

2

1 + 2x cos φ + x2
f(φ)dφ
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∼
∫ π−g(y)

π−(g(y))1/3

2f(π)

y2 + (φ− π)2
dφ +

∫ π−(g(y))1/3

0

2

1 + 2x cos φ + x2
f(φ)dφ

≤
∫ π−g(y)

π−(g(y))1/3

2f(π)

(φ− π)2
dφ +

∫ π−(g(y))1/3

0

2M

1 + 2x cos (π − (g(y))1/3) + x2
dφ

∼ 2f(π)

(
1

g(y)
− 1

(g(y))1/3

)
+

2Mπ

(g(y))2/3 + y2

= O

(
1

g(y)

)
.

It follows that

A1 ∼
2f(π)

y
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

A1 =
2f(π)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)
, for f ∈ C1 ([−π, π]).

Next, notice that

|(−x)n+1A1| ∼ |(−1 + y)n+1| c
y

≤
(

1− log log n

n

)n+1
c

y

∼ c

y log n

= o

(
1

g(y)

)
.

Combining these results and plugging into (2.22) yields

A ∼ 2f(π)

y
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

A =
2f(π)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)
, for f ∈ C1 ([−π, π]).

(2.23)

For B,

B =

∫ π

−π

eiφ

(1 + xe−iφ)(1 + xeiφ)2
f(φ)dφ

+

∫ π

−π

−(n + 1)(−x)nei(n+1)φ
(
1 + xeiφ

)
(1 + xe−iφ)(1 + xeiφ)2

f(φ)dφ

− (−x)n+1

∫ π

−π

f(φ)

(1 + xe−iφ)(1 + xeiφ)2

·
[
−(n + 1)(−x)n

(
1 + xeiφ

)
+ e−inφ

(
1− (−x)n+1ei(n+1)φ

)
+ ei(n+2)φ

]
dφ

= B1 + B2 + O
(
(−x)n+1 (|B1|+ |B2|)

)
.
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We will again show that the B1 term dominates, resulting in the expression

(2.24) B = B1 + B2 + O
(
(−x)n+1B1

)
.

Splitting B1 into two integrals yields

B1 = 2

∫ π

π−g(y)

cos φ + 1− y

(1 + 2(1− y) cos φ + (1− y)2)2f(φ)dφ

+ 2

∫ π−g(y)

0

cos φ + 1− y

(1 + 2(1− y) cos φ + (1− y)2)2f(φ)dφ.

For the first integral we have

= 2

∫ π

π−g(y)

−y + (φ−π)2

2
+ O ((φ− π)4)(

1 + 2(1− y)
(
−1 + (φ−π)2

2
+ O ((φ− π)4)

)
+ (1− y)2

)2f(φ)dφ

= 2

∫ π

π−g(y)

−y

((φ− π)2 + y2 − y(φ− π)2 + O ((φ− π)4))2f(φ)dφ + O

(
1

y

)
= 2

∫ π

π−g(y)

−y

((φ− π)2 + y2)2f(φ)dφ + O

(
1

y

)
.

For f ∈ C ([−π, π]) this becomes

∼ −2

∫ π

π−g(y)

yf(π)

((φ− π)2 + y2)2dφ

= −f(π)

y2

[
g(y)y

g2(y) + y2
+ arctan

(
g(y)

y

)]
∼ −f(π)

y2
arctan

(
g(y)

y

)
,

while for f ∈ C1 ([−π, π])

= −2

∫ π

π−g(y)

yf(π) + yf ′(φ0)(φ− π)

((φ− π)2 + y2)2 dφ + O

(
1

y

)
(where φ0 ∈ (π − φ, π))

= −f(π)

y2

[
(φ− π)y

(φ− π)2 + y2
+ arctan

(
φ− π

y

)]∣∣∣∣π
π−g(y)

+ O

(∫ π

π−g(y)

−y(φ− π)

((φ− π)2 + y2)2dφ +
1

y

)
= −f(π)

y2

[
g(y)y

g2(y) + y2
+ arctan

(
g(y)

y

)]
+ O

(
1

y

)
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= −f(π)

y2
arctan

(
g(y)

y

)
+ O

(
1

yg(y)

)
.

For the second integral in B1 we have∣∣∣∣∣2
∫ π−g(y)

0

cos φ + x

(1 + 2x cos φ + x2)2
f(φ)dφ

∣∣∣∣∣
≤ 2

∫ π−g(y)

π−(g(y))1/3

|cos φ + x| f(φ)

(1 + 2x cos φ + x2)2
dφ + 2

∫ π−(g(y))1/3

0

|cos φ + x| f(φ)

(1 + 2x cos φ + x2)2
dφ

∼ 2f(π)

∫ π−g(y)

π−(g(y))1/3

∣∣∣−y + (φ−π)2

2

∣∣∣
((φ− π)2 + y2)

dφ + 2

∫ π−(g(y))1/3

0

|cos φ + x| f(φ)

(1 + 2x cos φ + x2)2
dφ

≤ 2f(π)

∫ π−g(y)

π−(g(y))1/3

y + (φ− π)2

(φ− π)4
dφ +

∫ π−(g(y))1/3

0

4M

(1 + 2x cos (g(y))1/3 + x2)2
dφ

∼ 2f(π)y

3

(
1

(g(y))3
− 1

g(y)

)
+ 2f(π)

(
1

g(y)
− 1

(g(y))1/3

)
+

4πM

(g(y))4/3

= O

(
y

(g(y))3

)
.

It follows that

B1 ∼ −f(π)

y2
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

B1 = −f(π)

y2
arctan

(
g(y)

y

)
+ O

(
1

yg(y)

)
, for f ∈ C1 ([−π, π]).

Next, B2 we have

B2 =

∣∣∣∣∫ π

−π

−(n + 1)(−x)nei(n+1)φ(1 + xeiφ)

(1 + xe−iφ)(1 + xeiφ)2
f(φ)dφ

∣∣∣∣
≤
∫ π

−π

(n + 1)xn

(1 + xe−iφ)(1 + xeiφ)
f(φ)dφ

∼ c(n + 1)
(1− y)n

y

= O

(
1

yg(y)

)
,

where the last line is given by (2.12). Thus,∣∣(−x)n+1(B1 + B2)
∣∣ ∼ c

(1− y)n+1

y2

< c(n + 1)
(1− y)n+1

y

= O

(
1

yg(y)

)
.
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It now follows that

B ∼ −f(π)

y2
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

B = −f(π)

y2
arctan

(
g(y)

y

)
+ O

(
1

yg(y)

)
, for f ∈ C1 ([−π, π]).

(2.25)

Considering C last,

C =

∫ π

−π

1

(1 + xe−iφ)2(1 + xeiφ)2
f(φ)dφ +

∫ π

−π

(n + 1)2(−x)2n

(1 + xe−iφ)(1 + xeiφ)
f(φ)dφ

+ 2

∫ π

−π

−(n + 1)(−x)ne−inφ
(
1 + (−x)n+1ei(n+1)φ

)
(1 + xe−iφ)(1 + xeiφ)2

f(φ)dφ

+ (−x)n+1

∫ π

−π

−
(
e−i(n+1)φ + ei(n+1)φ

)
+ (−x)n+1

(1 + xe−iφ)2(1 + xeiφ)2
f(φ)dφ

= C1 + C2 + C3 + O
(
(−x)n+1C1

)
.

Splitting C1 into two integrals gives us

C1 = 2

∫ π

π−g(y)

1

(1 + 2x cos φ + x2)2
f(φ)dφ

+ 2

∫ π−g(y)

0

1

(1 + 2x cos φ + x2)2
f(φ)dφ.

(2.26)

For the first term we have

= 2

∫ π

π−g(y)

1(
1 + 2(1− y)

(
−1 + (φ−π)2

2
+ O ((φ− π)4)

)
+ (1− y)2

)2f(φ)dφ

= 2

∫ π

π−g(y)

1

((φ− π)2 + y2 − y(φ− π)2 + O ((φ− π)4))2f(φ)dφ

= 2

∫ π

π−g(y)

f(φ)

((φ− π)2 + y2)2dφ + O

(
1

y2

)
.

For f ∈ C ([−π, π]) this yields

∼ 2

∫ π

π−g(y)

f(π)

((φ− π)2 + y2)2dφ

=
f(π)

y3

[
g(y)y

g2(y) + y2
+ arctan

(
g(y)

y

)]
∼ f(π)

y3
arctan

(
g(y)

y

)
,
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while for f ∈ C1 ([−π, π])

= 2

∫ π

π−g(y)

f(π) + f ′(φ0)(φ− π)

((φ− π)2 + y2)2 dφ + O

(
1

y2

)
(where φ0 ∈ (π − φ, π))

=
f(π)

y3

[
(φ− π)y

(φ− π)2 + y2
+ arctan

(
φ− π

y

)] ∣∣∣∣π
π−g(y)

+ O

(∫ π

π−g(y)

−(φ− π)

((φ− π)2 + y2)2dφ +
1

y2

)
=

f(π)

y3

[
g(y)y

g2(y) + y2
+ arctan

(
g(y)

y

)]
+ O

(
1

y2

)
=

f(π)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)
.

Looking at the second integral in C1 we have

= 2

∫ π−g(y)

π−(g(y))1/3

f(φ)

(1 + 2x cos φ + x2)2dφ + 2

∫ π−(g(y))1/3

0

f(φ)

(1 + 2x cos φ + x2)2dφ

∼ 2f(π)

∫ π−g(y)

π−(g(y))1/3

1

(y2 + (φ− π)2)2dφ + 2

∫ π−(g(y))1/3

0

f(φ)

(1 + 2x cos φ + x2)2dφ

≤ 2f(π)

∫ π−g(y)

π−(g(y))1/3

1

(φ− π)4
dφ + 2

∫ π−(g(y))1/3

0

M

(1 + 2x cos ((g(y))1/3) + x2)
2dφ

∼ 2f(π)

(
1

(g(y))3
− 1

g(y)

)
+

2Mπ

(g(y))4/3

= O

(
1

(g(y))3

)
.

Thus,

C1 ∼
f(π)

y3
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

C1 =
f(π)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)
, for f ∈ C1 ([−π, π]).

(2.27)

For C2 we have,

C2 =

∫ π

−π

(n + 1)2x2n(1 + xeiφ)(1 + xe−iφ)

(1 + xe−iφ)2(1 + xeiφ)2
f(φ)dφ
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∼ c(n + 1)2 (1− y)2n

y
,

while for C3,

|C3| ≤ c

∫ π

−π

∣∣∣∣ −(n + 1)(−x)ne−inφ

(1 + xe−iφ)(1 + xeiφ)2
f(φ)

∣∣∣∣ dφ

≤ c(C1C2)
1/2 (by Cauchy-Schwarz)

∼ c
(n + 1)(1− y)n

y2
.

Also,

|(−x)n+1C1| ∼ c
(1− y)n+1

y3
≤ (n + 1)(1− y)n

y2
.

Applying (2.16), we can now conclude that

C ∼ f(π)

y3
arctan

(
g(y)

y

)
, for f ∈ C ([−π, π]),

C =
f(π)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)
, for f ∈ C1 ([−π, π]).

(2.28)

Combining (2.23), (2.25), and (2.28), for f ∈ C ([−π, π])

√
AC −B2

A
∼

√
πf(π)

y
· πf(π)

2y3
−
(

πf(π)

2y2

)2(−πf(π)

y

)−1

=
1

2y
.

For f ∈ C1 ([−π, π]) we now have

(2.29) AC −B2 =[
2f(π)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)][
f(π)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)]
−
[
−f(π)

y2
arctan

(
g(y)

y

)
+ O

(
1

yg(y)

)]2

=
f 2(π)

y4

[
arctan

(
g(y)

y

)]2

+ O

(
1

y3g(y)

)
,
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and

√
AC −B2

A
=

√
f2(π)

y4

[
arctan

(
g(y)

y

)]2
+ O

(
1

y3g(y)

)
2f(π)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)

=

√
f2(π)

y4

[
arctan

(
g(y)

y

)]2
+ O

(
1

y3g(y)

)
2f(π)

y
arctan

(
g(y)

y

) + O

(
1

g(y)

)

=
1

2y
+ O

(
1

g(y)

)
.

(2.30)

Plugging these into (2.1) gives us

E

[
N

(
−1 +

log log n

n
,−1 +

1

log n

)]
=

1

π

∫ −1+ 1
log n

−1+ log log n
n

√
AC −B2

A
dx

∼ 1

π

∫ 1
log n

log log n
n

1

2y
dy

=
1

2π
log y

∣∣∣∣ 1
log n

log log n
n

∼ 1

2π
log n,

(2.31)

for f ∈ C ([−π, π]), and

E

[
N

(
−1 +

log log n

n
,−1 +

1

log n

)]
=

1

π

∫ −1+ 1
log n

−1+ log log n
n

√
AC −B2

A
dx

=
1

π

∫ 1
log n

log log n
n

[
1

2y
+ O

(
1

g(y)

)]
dy

=
1

2π
log y

∣∣∣∣ 1
log n

log log n
n

+ O (log log n)

=
1

2π
log n + O (log log n) ,

(2.32)

for f ∈ C1 ([−π, π]).

We are now able to prove Theorem 2.1.1.

Proof of Theorem 2.1.1. Combining the results of Lemmas 2.2.1 and 2.3.1, we have

E[N(−1, 1)] ∼ 1

π
log n, for f ∈ C ([−π, π]),
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E[N(−1, 1)] =
1

π
log n + O (log log n) , for f ∈ C ([−π, π]).

From our discussion in the comments preceding section 1 we know that

E[N(−∞,∞)] = 2E[N(−1, 1)].

It then follows that

E[N(−∞,∞)] ∼ 2

π
log n, for f ∈ C ([−π, π]),

E[N(−∞,∞)] =
2

π
log n + O (log log n) , for f ∈ C ([−π, π]),

as claimed.

2.4 Conclusions

We have shown that, for the expected number of real zeros, behavior similar to the

independent case holds for a wide class of covariance functions. However, noting

the change in behavior when the covariance is constant, it would be of interest to

see exactly where this change in behavior takes place, and what would happen for

covariance functions with slower rates of decay. For example, if Γ(k) = 1
|k|+1

, the

techniques developed no longer apply. Thus, a new approach would have to be taken

to answer these questions.
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Chapter 3

K-level Crossings

3.1 Introduction

For the random polynomial given by (1), consider the problem of computing the ex-

pected number of real zeros for the equation Pn(x) = K, where K is a given constant.

These are known as the K-level crossings of Pn(x). For standard normal coefficients,

Farahmand considered this for two separate cases [11, 12]. The first assumes the

coefficients are independent, while the second deals with dependent coefficients with

a constant covariance ρ, where ρ ∈ (0, 1). In this chapter we will study further the

case of dependent coefficients.

Our will results will cover two different assumptions on K, similar to the ones

considered by Farahmand. The first assumes that K is bounded. If we require only

that the spectral density is continuous and positive, we will be able to show that the

expected number of level crossings will behave asymptotically like 2
π

log n as n →∞.

For the second situation, we will let K grow along with n. Under the assumptions

that K = o

(√
n

log log n

)
and that the spectral density is positive and in C1 ([−π, π]),

we will be able to show that the expected number of crossings in the interval (−1, 1)

is reduced. Recalling that NK(α, β) is the number of K-level crossings of Pn(x) in

the interval (α, β), these results are formulated as follows.

Theorem 3.1.1. Assume that the spectral density exists and is strictly positive.
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(i) For K bounded and f(φ) ∈ C([−π, π]) we have

E [NK (−1, 1)] = E [NK (−∞,−1) + NK (1,∞)] ∼ 1

π
log n.

(ii) For K = o

(√
n

log log n

)
and f(φ) ∈ C1([−π, π]) we have

E [NK (−1, 1)] =
1

π
log

n

K2
+ O (log log n) ,

E [NK (−∞,−1) + NK (1,∞)] =
1

π
log n + O (log log n) .

Recalling the Kac-Rice formula (1.6.1),

E [NK (α, β)] =
1

π

∫ β

α

√
AC −B2

A
exp

(
− K2C

2 (AC −B2)

)
dx

+
1

π

∫ β

α

√
2|BK|
A3/2

exp

(
−K2

2A

)
erf

(
| −BK|√

2A (AC −B2)

)
dx

=

∫ β

α

F1dx +

∫ β

α

F2dx,

(3.1)

where

A(x) = E[P 2
n(x)] =

n∑
k=0

n∑
j=0

Γ(k − j)xk+j,

B(x) = E[Pn(x)P ′
n(x)] =

n∑
k=0

n∑
j=0

Γ(k − j)kxk+j−1,

C(x) = E[(P ′
n(x))2] =

n∑
k=0

n∑
j=0

Γ(k − j)kjxk+j−2.

Applying (1.2) gives us

A =

∫ π

−π

n∑
k=0

n∑
j=0

e−i(k−j)φxk+jf(φ)dφ,

B =

∫ π

−π

n∑
k=0

n∑
j=0

e−i(k−j)φkxk+j−1f(φ)dφ,

C =

∫ π

−π

n∑
k=0

n∑
j=0

e−i(k−j)φkjxk+j−2f(φ)dφ.
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Recall that from (2.2), (2.3), and (2.4) we have the expressions

A =

∫ π

−π

H(x, x)f(φ)dφ

=

∫ π

−π

1− xn+1e−i(n+1)φ

1− xe−iφ
· 1− xn+1ei(n+1)φ

1− xeiφ
f(φ)dφ,

B =

∫ π

−π

[
∂H(x, y)

∂y

]
y=x

f(φ)dφ

=

∫ π

−π

(
1− xn+1e−i(n+1)φ

1− xe−iφ

)
·
(
−(n + 1)xnei(n+1)φ(1− xeiφ)− (1− xn+1ei(n+1)φ)(−eiφ)

(1− xeiφ)2

)
f(φ)dφ,

and

C =

∫ π

−π

[
∂2H(x, y)

∂x∂y

]
y=x

f(φ)dφ

=

∫ π

−π

(
−(n + 1)xne−i(n+1)φ(1− xe−iφ)− (1− xn+1e−i(n+1)φ)(−e−iφ)

(1− xe−iφ)2

)
·
(
−(n + 1)xnei(n+1)φ(1− xeiφ)− (1− xn+1ei(n+1)φ)(−eiφ)

(1− xeiφ)2

)
f(φ)dφ.

3.2 Expected Number of Level Crossings on (−1, 1)

Our first step will be to show that the contribution from the integral of F2 is negligible.

Lemma 3.2.1. For f(φ) continuous and positive we have∫ 1

−1

F2dx = o(log log n).
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Proof. Since f(φ) is a continuous, positive function, we can find constants c1, c2 > 0

such that c1
2π

> f(φ) > c2
2π

for any φ ∈ [−π, π]. Now, for the interval (−1+ log log n
n

, 1−
log log n

n
) we have

A ∼
∫ π

−π

1

(1− xe−iφ)(1− xeiφ)
f(φ)dφ,

from which we can then derive the lower bound

(3.2)
c2 (1− x2n+2)

1− x2
≤ c2

1− x2
=

c2

2π

∫ π

−π

1

(1− xe−iφ)(1− xeiφ)
dφ ≤ A.

Using the fact that f ≡ 1
2π

in the independent case, we can derive an upper bound

as well, where

A ≤ c1

2π

∫ π

−π

(
1− xn+1e−i(n+1)φ

) (
1− xn+1ei(n+1)φ

)
(1− xe−iφ)(1− xeiφ)

dφ

= c1
1− x2n+2

1− x2

≤ c1

1− x2
.

(3.3)

Notice that this upper bound holds on the entire interval (0, 1). Next, from our work

in Chapter 2 we know that

|B| ∼
∫ π

−π

∣∣∣∣ eiφ

(1− xe−iφ)(1− xeiφ)2

∣∣∣∣ f(φ)dφ,

which implies

|B| ≤ 1

1− |x|

∫ π

−π

1

(1− xe−iφ)(1− xeiφ)
f(φ)dφ

∼ 1

1− |x|
A.

It follows that

|B|
A3/2

≤ 1

1− |x|

(
1− x2

c2

)1/2

≤
√

2

c2

1

(1− |x|)1/2
,

and

exp

(
−K2

2A

)
≤ 1

1 + K2

2A
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≤ 1

1 + K2(1−x2)
2c1

≤ 1

1 + K2(1−|x|)
2c1

.

Thus, ∫ 1− log log n
n

−1+ log log n
n

F2dx ≤
√

2

c2

∫ 1− log log n
n

−1+ log log n
n

|K|(1− |x|)−1/2

1 + K2(1−|x|)
2c1

dx

= 2

√
2

c2

∫ 1− log log n
n

0

|K|(1− x)−1/2

1 + K2(1−x)
2c1

dx

= −2
√

2c1 arctan

(
K
√

1− x√
2c1

)∣∣∣∣1− log log n
n

0

= O(1).

(3.4)

Next, for x ∈ (−1,−1 + log log n
n

) ∪ (1− log log n
n

, 1),

|B| ≤ n

|x|

n∑
k=0

n∑
j=0

Γ(k − j)|x|k+j

≤ nc1

|x|

n∑
k=0

x2k,

by (3.3). We also have

A ≥ c2

2π

∫ π

−π

(
1− xn+1e−i(n+1)φ

) (
1− xn+1ei(n+1)φ

)
(1− xe−iφ)(1− xeiφ)

dφ

= c2

n∑
k=0

x2k,

from which it then follows that

|B|
A3/2

≤ nc

(
n∑

k=0

x2k

)−1/2

≤ nc

(
n∑

k=0

(
1− log log n

n

)2k
)−1/2

∼ nc

(
2
log log n

n

)1/2

∼ c (n log log n)1/2 .
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Thus,
√

2

π

∫ 1

1− log log n
n

F2 ≤
√

2

π

∫ 1

1− log log n
n

|KB|
A3/2

≤ π

∫ 1

1− log log n
n

c|K| (n log log n)1/2

= c|K|(log log n)3/2

n1/2

= o (log log n) .

Similarly, √
2

π

∫ −1+ log log n
n

−1

F2 = o(log log n),

which proves the claim.

We will next show that the expected number of zeros on the intervals (0, 1− 1
log n

),

(1− log log n
n

, 1), (−1 + 1
log n

, 0) and (−1,−1 + log log n
n

) is negligible.

Lemma 3.2.2. Assume f(φ) is continuous and positive. For the intervals (−1,−1+

log log n
n

), (−1+ 1
log n

, 0), (0, 1− 1
log n

), and (1− log log n
n

, 1), the expected number of zeros

is O(log log n).

Proof. To start, we note that since the quantity K2C
AC−B2 is never negative, the inequal-

ity

exp

(
− K2C

2 (AC −B2)

)
≤ 1

holds in general. It follows that

(3.5)

∫ β

α

F1dx ≤ 1

π

∫ β

α

√
AC −B2

A
dx.

Applying Lemma 3.2.1 from above, along with Lemma 2.2.1, we then have

E

[
N

(
−1 +

1

log n
, 1− 1

log n

)]
= O (log log n) ,

and

E

[
N

(
−1,−1 +

log log n

n

)]
= E

[
N

(
1− log log n

n
, 1

)]
= O (log log n) .
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In what remains of this section we will mainly be concerned with computing F1

on the intervals (−1 + log log n
n

,−1 + 1
log n

) and (1 − 1
log n

, 1 − log log n
n

). Recall that

g(y) = y log n
log log n

. Starting with x = 1 − y ∈ (1 − 1
log n

, 1 − log log n
n

), from our work in

Chapter 2 we have the equations

A ∼ 2f(0)

y
arctan

(
g(y)

y

)
,

B ∼ f(0)

y2
arctan

(
g(y)

y

)
,

C ∼ f(0)

y3
arctan

(
g(y)

y

)
,

(3.6)

for f(φ) ∈ C ([−π, π]), and

A =
2f(0)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)
,

B =
f(0)

y2
arctan

(
g(y)

y

)
+ O

(
1

yg(y)

)
,

C =
f(0)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)
,

(3.7)

for f(φ) ∈ C1 ([−π, π]). Also from Chapter 2, we have the expressions

AC −B2 ∼ f 2(0)

y4

[
arctan

(
g(y)

y

)]2

,

√
AC −B2

A
∼ 1

2y
,

(3.8)

for f(φ) ∈ C ([−π, π]), and

AC −B2 =
f 2(0)

y4

[
arctan

(
g(y)

y

)]2

+ O

(
1

y3g(y)

)
,

√
AC −B2

A
=

1

2y
+ O

(
1

g(y)

)
,

(3.9)

for f(φ) ∈ C1 ([−π, π]).

We will first handle the simpler case when f(φ) ∈ C ([−π, π]) and K is bounded.

From (3.6) and (3.8) we have

CK2

2(AC −B2)
∼ K2y

2f(0) arctan
(

g(y)
y

) .
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It follows that

1

π

∫ 1
log n

log log n
n

1

2y
exp

 −K2y

2f(0) arctan
(

g(y)
y

)
dy

∼ 1

π

∫ 1
log n

log log n
n

1

2y

1− K2y

2f(0) arctan
(

g(y)
y

)
 dy

∼ 1

π

∫ 1
log n

log log n
n

1

2y

∼ 1

2π
log n.

Next, let f(φ) ∈ C1 ([−π, π]) and K = o

(√
n

log log n

)
. Applying (3.7) and (3.9)

yields

CK2

2(AC −B2)
=

K2

2

[
f(0)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)]
·

[
f 2(0)

y4

[
arctan

(
g(y)

y

)]2

+ O

(
1

y3g(y)

)]−1

=
K2y

2f(0) arctan
(

g(y)
y

) + O

(
K2y2

g(y)

)
.

Now, we can choose positive constants a1 and a2 such that for large enough n,

a1K
2y

2f(0) arctan
(

g(y)
y

) ≤ K2y

2f(0) arctan
(

g(y)
y

) + O

(
K2y2

g(y)

)

≤ a2K
2y

2f(0) arctan
(

g(y)
y

) ,

which then yields

(3.10)

[
1

2y
+ O

(
1

g(y)

)]
exp

 −a2K
2y

2f(0) arctan
(

g(y)
y

)


≤ F1 ≤
[

1

2y
+ O

(
1

g(y)

)]
exp

 −a1K
2y

2f(0) arctan
(

g(y)
y

)
.
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For i = 1, 2 we have[
1

2y
+ O

(
1

g(y)

)]
exp

 −aiK
2y

2f(0) arctan
(

g(y)
y

)


=
1

2y
exp

 −aiK
2y

2f(0) arctan
(

g(y)
y

)
+ O

(
1

g(y)

)
.

Thus, using an argument similar to the one in [11],

1

π

∫ 1
log n

log log n
n

[
1

2y
exp

 −aiK
2y

2f(0) arctan
(

g(y)
y

)
+ O

(
1

g(y)

)]
dy

=
1

π

∫ 1
log n

log log n
n

1

2y
exp

(
−cK2y

)
dy + O (log log n)(

where c = ai

[
2f(0) arctan

(
g(y)

y

)]−1
)

=
1

2π

[
log

(
cK2 1

log n

)
− log

(
cK2 log log n

n

)]
+

1

2π

∫ cK2 log log n
n

0

1− e−t

t
dt− 1

2π

∫ cK2 1
log n

0

1− e−t

t
dt

=
1

2π
log n +

1

2π

∫ cK2 log log n
n

0

1− e−t

t
dt− 1

2π

∫ cK2 1
log n

0

1− e−t

t
dt + O (log log n) .

Since we are assuming that K2 log log n
n

→ 0 as n → ∞, the first integral is o(1). For

the second we have

= − 1

2π

∫ cK2 1
log n

1

1− e−t

t
dt− 1

2π

∫ 1

0

1− e−t

t
dt

= − 1

2π

∫ cK2 1
log n

1

1

t
dt +

1

2π

∫ cK2 1
log n

1

e−t

t
dt + O(1)

= − 1

2π
log K2 + O (log log n) .

From (3.10) it then follows that

(3.11)
1

π

∫ 1− log log n
n

1− 1
log n

F1 =
1

2π
log
( n

K2

)
+ O (log log n) .

To handle the interval from (−1+ log log n
n

,−1+ 1
log n

) we will substitute in −x = −1+y,

where x ∈ (1− 1
log n

, 1− log log n
n

). Then

A =

∫ π

−π

1− (−x)n+1e−i(n+1)φ

1 + xe−iφ
· 1− (−x)n+1ei(n+1)φ

1 + xeiφ
f(φ)dφ,
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B =

∫ π

−π

(
1− (−x)n+1e−i(n+1)φ

1 + xe−iφ

)
·
(
−(n + 1)(−x)nei(n+1)φ(1 + xeiφ)− (1− (−x)n+1ei(n+1)φ)(−eiφ)

(1 + xeiφ)2

)
f(φ)dφ,

and

C =

∫ π

−π

(
−(n + 1)(−x)ne−i(n+1)φ(1 + xe−iφ)− (1− (−x)n+1e−i(n+1)φ)(−e−iφ)

(1 + xe−iφ)2

)
·
(
−(n + 1)(−x)nei(n+1)φ(1 + xeiφ)− (1− (−x)n+1ei(n+1)φ)(−eiφ)

(1 + xeiφ)2

)
f(φ)dφ.

Referring to Chapter 2 once more,

A ∼ 2f(π)

y
arctan

(
g(y)

y

)
,

B ∼ −f(π)

y2
arctan

(
g(y)

y

)
,

C ∼ f(π)

y3
arctan

(
g(y)

y

)
,

(3.12)

for f(φ) ∈ C ([−π, π]), and

A =
2f(π)

y
arctan

(
g(y)

y

)
+ O

(
1

g(y)

)
,

B = −f(π)

y2
arctan

(
g(y)

y

)
+ O

(
1

yg(y)

)
,

C =
f(π)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)
,

(3.13)

for f(φ) ∈ C1 ([−π, π]). We now have the expressions

AC −B2 ∼ f 2(π)

y4

[
arctan

(
g(y)

y

)]2

,

√
AC −B2

A
∼ 1

2y
,

(3.14)

for f(φ) ∈ C ([−π, π]), and

AC −B2 =
f 2(π)

y4

[
arctan

(
g(y)

y

)]2

+ O

(
1

y3g(y)

)
,

√
AC −B2

A
=

1

2y
+ O

(
1

g(y)

)
,

(3.15)
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for f(φ) ∈ C1 ([−π, π]).

We will again start with the simpler case when f(φ) ∈ C ([−π, π]) and K is

bounded. By (3.12) and (3.14),

CK2

2(AC −B2)
∼ K2y

2f(π) arctan
(

g(y)
y

) ,

from which it then follows that

1

π

∫ 1
log n

log log n
n

1

2y
exp

 −K2y

2f(π) arctan
(

g(y)
y

)
dy

∼ 1

π

∫ 1
log n

log log n
n

1

2y

1− K2y

2f(π) arctan
(

g(y)
y

)
 dy

∼ 1

π

∫ 1
log n

log log n
n

1

2y

∼ 1

2π
log n.

Next, we will assume f(φ) ∈ C1 ([−π, π]) and K = o

(√
n

log log n

)
. Using (3.13)

and (3.15) gives us

CK2

2(AC −B2)
=

K2

2

[
f(π)

y3
arctan

(
g(y)

y

)
+ O

(
1

y2g(y)

)]
·

[
f 2(π)

y4

[
arctan

(
g(y)

y

)]2

+ O

(
1

y3g(y)

)]−1

=
K2y

2f(π) arctan
(

g(y)
y

) + O

(
K2y2

g(y)

)
.

As before, we can choose positive constants a1 and a2 such that

a1K
2y

2f(π) arctan
(

g(y)
y

) ≤ K2y

2f(π) arctan
(

g(y)
y

) + O

(
K2y2

g(y)

)

≤ a2K
2y

2f(π) arctan
(

g(y)
y

) ,

which then yields
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(3.16)

[
1

2y
+ O

(
1

g(y)

)]
exp

 −a2K
2y

2f(π) arctan
(

g(y)
y

)


≤ F1 ≤
[

1

2y
+ O

(
1

g(y)

)]
exp

 −a1K
2y

2f(π) arctan
(

g(y)
y

)
.

Now, for i = 1, 2 we have

[
1

2y
+ O

(
1

g(y)

)]
exp

 −aiK
2y

2f(π) arctan
(

g(y)
y

)


=
1

2y
exp

 −aiK
2y

2f(π) arctan
(

g(y)
y

)
+ O

(
1

g(y)

)
.

Thus,

1

π

∫ 1
log n

log log n
n

[
1

2y
exp

 −aiK
2y

2f(π) arctan
(

g(y)
y

)
+ O

(
1

g(y)

)]
dy

=
1

π

∫ 1
log n

log log n
n

1

2y
exp

(
−cK2y

)
dy + O (log log n)(

where c = ai

[
2f(π) arctan

(
g(y)

y

)]−1
)

=
1

2π

[
log

(
cK2 1

log n

)
− log

(
cK2 log log n

n

)]
+

1

2π

∫ cK2 log log n
n

0

1− e−t

t
dt− 1

2π

∫ cK2 1
log n

0

1− e−t

t
dt

=
1

2π
log n +

1

2π

∫ cK2 log log n
n

0

1− e−t

t
dt− 1

2π

∫ cK2 1
log n

0

1− e−t

t
dt + O (log log n) .

Since we are assuming that K2 log log n
n

→ 0 as n → ∞, the first integral is o(1). For

the second,

= − 1

2π

∫ cK2 1
log n

1

1− e−t

t
dt− 1

2π

∫ 1

0

1− e−t

t
dt

= − 1

2π

∫ cK2 1
log n

1

1

t
dt +

1

2π

∫ cK2 1
log n

1

e−t

t
dt + O(1)

= − 1

2π
log K2 + O (log log n) .
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It follows that

(3.17)
1

π

∫ −1+ 1
log n

−1+ log log n
n

F1 =
1

2π
log
( n

K2

)
+ O (log log n) .

3.3 Expected Number of Level Crossings on

(−∞,−1) and (1,∞)

Now that we have derived the expected number of zeros for (−1, 1), in this last section

we will consider the remaining intervals (−∞,−1) and (1,∞). We will start with the

latter. Let x = 1
z
. Then, for z ∈ (0, 1) we have

A

(
1

z

)
=

n∑
k=0

n∑
j=0

Γ(k − j)z−(k+j)

=

∫ π

−π

1− z−(n+1)e−i(n+1)φ

1− z−1e−iφ
· 1− z−(n+1)ei(n+1)φ

1− z−1eiφ
f(φ)dφ

= z−2n

∫ π

−π

1− zn+1ei(n+1)φ

1− zeiφ
· 1− zn+1e−i(n+1)φ

1− ze−iφ
f(φ)dφ,

(3.18)

B

(
1

z

)
=

n∑
k=0

n∑
j=0

Γ(k − j)kz−(k+j−1)

=

∫ π

−π

1− z−(n+1)e−i(n+1)φ

1− z−1e−iφ

·
−(n + 1)z−nei(n+1)φ

(
1− z−1eiφ

)
+
(
1− z−(n+1)ei(n+1)φ

)
eiφ

(1− z−1eiφ)2 f(φ)dφ

= −z−2n+1

∫ π

−π

1− zn+1ei(n+1)φ

1− zeiφ

·
−(n + 1)

(
1− ze−iφ

)
+ 1− zn+1e−i(n+1)φ

(1− ze−iφ)2 f(φ)dφ,

(3.19)

and

C

(
1

z

)
=

n∑
k=0

n∑
j=0

Γ(k − j)kjz−(k+j−2)

=

∫ π

−π

−(n + 1)z−ne−i(n+1)φ
(
1− z−1e−iφ

)
+
(
1− z−(n+1)e−i(n+1)φ

)
e−iφ

(1− z−1e−iφ)2

(3.20)
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·
−(n + 1)z−nei(n+1)φ

(
1− z−1eiφ

)
+
(
1− z−(n+1)ei(n+1)φ

)
eiφ

(1− z−1eiφ)2 f(φ)dφ

= z−2n+2

∫ π

−π

−(n + 1)
(
1− zeiφ

)
+ 1− zn+1ei(n+1)φ

(1− zeiφ)2

·
−(n + 1)

(
1− ze−iφ

)
+ 1− zn+1e−i(n+1)φ

(1− ze−iφ)2 f(φ)dφ.

As before, our first step is to get a bound for the integral of F2.

Lemma 3.3.1. ∫ ∞

1

F2dx =

∫ −1

−∞
F2dx = o(1).

Proof. We have ∫ ∞

1

F2dx ≤
√

2

π

∫ ∞

1

|B(x)K|
A3/2(x)

dx

=

√
2

π

∫ 1

0

1

z2

∣∣B (1
z

)
K
∣∣

A3/2
(

1
z

) dz.

(3.21)

Let c1 and c2 be as in the proof of Lemma 3.2.1. Then, for z ∈ (−1, 0) ∪ (0, 1)∣∣∣∣B(1

z

)∣∣∣∣ ≤ n|z|−2n+1

n∑
k=0

n∑
j=0

Γ(k − j)|z|2n−k−j

= n|z|−2n+1A(|z|)

≤ c1n|z|−2n+1 1− z2n+2

1− z2
,

where the last line is given by (3.3). Also,

A

(
1

z

)
≥ z−2n c2

2π

∫ π

−π

1− zn+1ei(n+1)φ

(1− zeiφ)
· 1− zn+1e−i(n+1)φ

(1− ze−iφ)
dφ

= c2z
−2n 1− z2n+2

1− z2
.

Thus, ∣∣B (1
z

)∣∣
A3/2

(
1
z

) ≤ cn|z|n+1

√
1− z2

1− z2n+2
.

Consider the interval (1 − 1√
n
, 1). Recalling that K = o

(√
n

log log n

)
, the above

inequality yields

√
2

π

∫ 1− 1√
n

0

1

z2

∣∣B (1
z

)
K
∣∣

A3/2
(

1
z

) dz
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≤ c|K|
∫ 1− 1√

n

0

nzn−1

√
1− z2

1− z2n+2

≤ c|K|
(

1− 1√
n

)n

= o(1).

Next, for z ∈ (1− 1√
n
, 1) we have

√
2

π

∫ 1

1− 1√
n

1

z2

∣∣B (1
z

)
K
∣∣

A3/2
(

1
z

) dz

≤ c|K|
∫ 1

1− 1√
n

nzn−1

√
1− z2

1− z2n+2

= c|K|zn

√
1− z2

1− z2n+2

∣∣∣∣∣
1

1− 1√
n

− c|K|
∫ 1

1− 1√
n

zn d

dz

(√
1− z2

1− z2n+2

)
dz

= o(1),

where the last line follows from the fact that

d

dz

(√
1− z2

1− z2n+2

)
= O

(√
n
)

on z ∈ (1 − 1√
n
, 1). Applying (3.21), this proves the result for (1,∞). Noting that

the same argument works for −z, the result then follows for (−∞,−1) as well.

Our next lemma will evaluate the integral of F1.

Lemma 3.3.2. (i) For f ∈ C ([−π, π]),∫ ∞

1

F1dx =

∫ −1

−∞
F1dx ∼ 1

2π
log n.

(ii) For f ∈ C1 ([−π, π]),∫ ∞

1

F1dx =

∫ −1

−∞
F1dx =

1

2π
log n + O (log log n) .

Proof. We will prove the result assuming that f ∈ C1 ([−π, π]); the resulting argu-

ment will require only a few minor changes to prove the claim for f ∈ C ([−π, π]).

To start, we have the inequality∫ ∞

1

F1dx ≤ 1

π

∫ ∞

1

√
A(x)C(x)−B2(x)

A(x)
dx.
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Notice that the expression on the right is simply the expected number of real zeros

of Pn(x) on (1,∞). Similarly,∫ −1

−∞
F1dx ≤ 1

π

∫ −1

−∞

√
A(x)C(x)−B2(x)

A(x)
dx.

Thus, our work in Chapter 2 yields the upper bounds∫ ∞

1

F1dx ≤ 1

2π
log n + O (log log n) ,∫ −1

−∞
F1dx ≤ 1

2π
log n + O (log log n) .

(3.22)

The rest of the proof will be devoted to the derivation of a lower bound.

Consider the interval (1− 1
log n

, 1− log log n
n

). Let z = 1− y, and recall that g(y) =

y log n
log log n

. Using (3.18), (3.19), (3.20), and our results from Chapter 2, along with some

tedious algebra, we can derive the expression

A

(
1

z

)
C

(
1

z

)
−B2

(
1

z

)
= z−4n+2

[∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)
·
∫ π

−π

f(φ)dφ

(1− zeiφ)2 (1− ze−iφ)2

−
(∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)2

)2

+ O

(
(n + 1)zn+1

∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)
·
∫ π

−π

f(φ)dφ

(1− zeiφ) (1− ze−iφ)2

)]

= (1− y)−4n+2

[
f 2(0)

y4
arctan2

(
g(y)

y

)
+ O

(
1

y3g(y)

)]
.

Thus,

(3.23)

√
A
(

1
z

)
C
(

1
z

)
−B2

(
1
z

)
A
(

1
z

) = (1− y)

[
1

2y
+ O

(
1

g(y)

)]
.

Also, if we refer to our work in Chapter 2 once more,

(3.24) C

(
1

z

)
∼ (1− y)−2n+2 2(n + 1)2f(0)

y
arctan

(
g(y)

y

)
.

Applying (3.1) we then have∫ ∞

1

F1dx =
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=
1

π

∫ 1

0

1

z2

√
A
(

1
z

)
C
(

1
z

)
−B2

(
1
z

)
A
(

1
z

) exp

(
−

K2C
(

1
z

)
2
(
A
(

1
z

)
C
(

1
z

)
−B2

(
1
z

))) dz

≥ 1

π

∫ 1− log log n
n

1− 1
log n

1

z2

√
A(1

z
)C(1

z
)−B2(1

z
)

A(1
z
)

exp

(
−

K2C(1
z
)

2
(
A(1

z
)C(1

z
)−B2(1

z
)
)) dz

=
1

π

∫ 1
log n

log log n
n

[
1

2y(1− y)

[
1 + O

(
K2(n + 1)2(1− y)2ny3

)]
+ O

(
1

g(y)

)]
dy

=
1

π

∫ 1
log n

log log n
n

1

2y(1− y)
dy + O (log log n)

=
1

2π
log n + O (log log n) .

Noting that almost the exact same argument holds for −z,∫ −1

−∞
F1dx ≥ 1

2π
log n + O (log log n) ,

as well. Combined with (3.22), the claim then follows.

Proof of Theorem 3.1.1. Combining the results of Lemmas 3.2.1, 3.2.2, 3.3.1, and

3.3.2, along with equations (3.11) and (3.17), Theorem 3.1.1 now follows.

3.4 Conclusions

Under the restrictions imposed on the spectral density, we have shown that for the

K-level crossings, just as in the case of the expected number of real zeros, behavior

similar to the independent case holds. However, similar open questions also remain.

That is, it would be of interest to see what happens to the expected number of K-level

crossings for covariance functions with slower rates of decay, as well as to identify at

what point the behavior changes to match that of the constant covariance case.
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Chapter 4

Complex Zeros

4.1 Real Gaussian Coefficients

In this chapter we will extend the work of Shepp and Vanderbei [28] to study the

complex zeros of random polynomials with dependent coefficients. This work will be

divided into two separate cases. The first will assume dependent standard normal

coefficients. Under certain restrictions on the spectral density, we will show that in

the limit the zeros accumulate around the unit circle in the complex plane, uniformly

in the angle, just as in the independent case. While this result is covered in [15],

we present it here for two reasons. First, the analysis here will give a slightly more

detailed picture of the way in which this happens. Secondly, we will then employ

similar techniques in the second half of this chapter to study a problem which has

applications to the GSM (Global System for Mobile Communications)/EDGE (En-

hanced Data Rates for GSM Evolution) standard for mobile phones. Here, we will

consider random polynomials with dependent complex Gaussian coefficients, having

mean zero and exponentially increasing or decreasing variances. As a further note, to

give an illustration of this type of behavior in action, in Appendix B we have included

a few results of numerical simulations for the independent case of standard normal

coefficients.
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4.1.1 Formula for the Distribution of Zeros

Before we state our first result we must mention a couple of things. The first concerns

the distribution of the zeros of Pn(z). If we consider the function

znPn(
1

z
) = zn(X0 + X1

1

z
+ · · ·+ Xn

1

zn
)

= X0z
n + X1z

n−1 + · · ·+ Xn,

it can be seen that whenever |z0| > 1 is a zero of znPn(1
z
), then z̃0 = 1

z0
is a zero of

Pn(z), where |z̃0| < 1. Since the distributions of the zeros of the two functions are the

same, it is sufficient to only look at the expected number of zeros on the unit disk,

and then multiply that amount by two.

We will also need to compute several expressions. Making use of the spectral

density form of the covariance function (1.2), we can derive formulas for the following

covariances:

A0(z) = E[P 2
n(z)] =

n∑
k=0

n∑
j=0

∫ π

−π

f(φ)e−i(k−j)φzk+jdφ

=

∫ π

−π

f(φ)
1− zn+1e−i(n+1)φ

1− ze−iφ
· 1− zn+1ei(n+1)φ

1− zeiφ
dφ,

B0(z) = E[Pn(z)Pn(z)] =
n∑

k=0

n∑
j=0

∫ π

−π

f(φ)e−i(k−j)φzkzjdφ

=

∫ π

−π

f(φ)
1− zn+1e−i(n+1)φ

1− ze−iφ
· 1− zn+1ei(n+1)φ

1− zeiφ
dφ,

A1(z) = E[Pn(z)zP ′
n(z)] =

n∑
k=0

n∑
j=0

∫ π

−π

f(φ)e−i(k−j)φjzk+jdφ

=

∫ π

−π

f(φ)
1− zn+1e−i(n+1)φ

1− ze−iφ

· −(n + 1)zn+1ei(n+1)φ(1− zeiφ) + zeiφ(1− zn+1ei(n+1)φ)

(1− zeiφ)2
dφ,

B1(z) = E[Pn(z)zP ′
n(z)] =

n∑
k=0

n∑
j=0

∫ π

−π

f(φ)e−i(k−j)φjzkzjdφ

=

∫ π

−π

f(φ)
1− zn+1e−i(n+1)φ

1− ze−iφ

· −(n + 1)zn+1ei(n+1)φ(1− zeiφ) + zeiφ(1− zn+1ei(n+1)φ)

(1− zeiφ)2
dφ.

(4.1)
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In addition, let

(4.2) D0(z) =
√

B2
0(z)− |A0(z)|2.

One main difference from the independent case is that these expressions are not

straightforward to compute; they depend on the values of the spectral density. To

apply these formulas we will rely heavily on deriving asymptotic values throughout

this section. Let νn(Ω) be the number of zeros in the set Ω. Our first theorem is

stated as follows:

Theorem 4.1.1. For any region Ω ∈ C whose boundary intersects the real axis at

most finitely many times we have

(4.3) E[νn(Ω)] =
1

2πi

∫
∂Ω

1

z
F (z)dz,

where

(4.4) F =
B1D0 + B0B1 − A0A1

D0(B0 + D0)
.

Proof. The proof will be based on that of Shepp and Vanderbei, with the addition

of some necessary changes to adapt it to the case when the coefficients are no longer

assumed to be independent. We will first outline the beginning part of their procedure;

the second half of our argument will discuss the needed changes. To start, we can

use the argument principle to compute νn(Ω) (see [6] for a reference). It follows that

νn(Ω) =
1

2πi

∫
∂Ω

P ′
n(z)

Pn(z)
dz.

By applying Fubini’s Theorem [22] and a result of Hammersley [14] on the distribution

of the zeros of a random polynomial with Gaussian coefficients, we can take the

expectation and move it inside the integral. Thus, this becomes

E[νn(Ω)] =
1

2πi

∫
∂Ω

E

[
P ′

n(z)

Pn(z)

]
dz

=
1

2πi

∫
∂Ω

1

z
E

[
zP ′

n(z)

Pn(z)

]
dz.

The rest of the proof will be devoted to deriving the formula for F (z) = E
[

zP ′
n(z)

Pn(z)

]
given in the statement of the theorem.
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Following the established procedure, we can decompose Pn(z) and P ′
n(z) into their

real and imaginary parts. We have

Pn(z) = Y1 + iY2,

zP ′
n(z) = Y3 + iY4,

where

Y1 =
∑n

j=0 ajXj, Y2 =
∑n

j=0 bjXj,

Y3 =
∑n

j=0 cjXj, Y4 =
∑n

j=0 djXj.

Furthermore,

(4.5)

aj = Re(zj) = zj+zj

2
,

bj = Im(zj) = zj−zj

2
,

cj = jaj,

dj = jbj.

Let M denote the covariance matrix of Y = [ Y1 Y2 Y3 Y4 ]T . Using the

Cholesky factor, L, for the matrix M , we have the decomposition

E
[
Y Y T

]
= M = LLT = E

[
LWW T LT

]
,

where W = [ W1 W2 W3 W4 ]T is a vector of four independent standard normal

random variables. In addition to L being lower triangular, notice that the above

series of equalities also implies that Y =d LW . That is, Y and LW are equal in

distribution. Using these results, we have

zP ′
n(z)

Pn(z)
=

Y3 + iY4

Y2 + iY2

=d
(l31 + il41)W1 + (l32 + il42)W2 + (l33 + il43)W3 + il44W4

(l11 + il21)W1 + il22W2

,

where the lij are elements of L. From here, after a series of manipulations and

calculations (the details of which are in [28]), we arrive at the following formula:

F (z) = E

[
zP ′

n(z)

Pn(z)

]
=

l32 − l41 + i(l31 + l42)

−l21 + i(l11 + l22)
.

(4.6)
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Up until this point we have basically given a summary of the techniques used

by Shepp and Vanderbei. However, we will now need to derive expressions for the

elements of L and M , and this is where our argument will begin to diverge from

theirs. The dependence among the coefficients of Pn(z) and P ′
n(z) presents a slightly

different challenge and necessitates the use of the spectral density of the covariance

function. The relevant elements of L are

l11 = m11√
m11

,

l21 = m21√
m11

, l22 =
m11m22−m2

21

R
√

m11
,

l31 = m31√
m11

, l32 = m11m32−m31m21

R
√

m11
,

l41 = m41√
m11

, l42 = m11m42−m41m21

R
√

m11
,

where

R =
√

m11m22 −m2
21.

Plugging these into (4.6) gives the formula

(4.7) F (z) =
−m41 + im31 − i(m11(−m42+im32)−m21(−m41+im31))

R

−m21 + im11 + iR
.

Our next step is to compute the elements of M . Using the spectral density we

can derive the following expressions:

m11 = E[Y 2
1 ]

=
1

4

∫ π

−π

f(φ)

[
n∑

k=0

n∑
j=0

e−ikφeijφ(zk+j + zkzj + zkzj + zk+j)

]
dφ,

m12 = E[Y1Y2]

= − i

4

∫ π

−π

f(φ)

[
n∑

k=0

n∑
j=0

e−ikφeijφ(zk+j + zkzj − zkzj − zk+j)

]
dφ,

m13 = E[Y1Y3]

=
1

4

∫ π

−π

f(φ)

[
n∑

k=0

n∑
j=0

e−ikφeijφj(zk+j + zkzj + zkzj + zk+j)

]
dφ,

m14 = E[Y1Y4]

59



= − i

4

∫ π

−π

f(φ)

[
n∑

k=0

n∑
j=0

e−ikφeijφj(zk+j + zkzj − zkzj − zk+j)

]
dφ,

m22 = E[Y 2
2 ]

= −1

4

∫ π

−π

f(φ)

[
n∑

k=0

n∑
j=0

e−ikφeijφ(zk+j − zkzj − zkzj + zk+j)

]
dφ,

m23 = E[Y2Y3]

= − i

4

∫ π

−π

f(φ)

[
n∑

k=0

n∑
j=0

e−ikφeijφj(zk+j + zkzj − zkzj − zk+j)

]
dφ,

m24 = E[Y2Y4]

= −1

4

∫ π

−π

f(φ)

[
n∑

k=0

n∑
j=0

e−ikφeijφj(zk+j − zkzj − zkzj + zk+j)

]
dφ.

Using (4.1), with a little work we can now express the elements of M as follows:

(4.8)

m11 = E[ξ2
1 ] = 1

4
(A0 + 2B0 + A0)

m12 = E[ξ1ξ2] = − i
4
(A0 − A0)

m13 = E[ξ1ξ3] = 1
4
(A1 + B1 + B1 + A1)

m14 = E[ξ1ξ4] = − i
4
(A1 + B1 −B1 − A1)

m22 = E[ξ2
2 ] = −1

4
(A0 − 2B0 + A0)

m23 = E[ξ2ξ3] = − i
4
(A1 + B1 −B1 − A1)

m24 = E[ξ2ξ4] = −1
4
(A1 −B1 −B1 + A1).

Applying (4.2) and a little algebra, we also have

R =
√

m11m22 −m2
21

=
1

2

√
B2

0 − |A0|2

=
1

2
D0.

(4.9)

Finally, by combining (4.7), (4.8), and (4.9), along with some tedious simplifica-

tions, we arrive at the formula

F (z) =
(A0 + 2B0 + A0)(B1D0 + B0B1 − A0A1)

(A0 + 2B0 + A0)D0(B0 + D0)

=
B1D0 + B0B1 − A0A1

D0(B0 + D0)
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=
B1D0 + B0B1 − A0A1

B0D0 + B2
0 − A0A0

,

as claimed.

4.1.2 Properties of the Distribution of Zeros

Now that we have verified Shepp and Vanderbei’s formula for the expected number of

zeros when some dependence is assumed among the coefficients, we can discuss some

applications. We will proceed as they did, proving a series of results which illustrates

the interesting behavior of the zeros. While we are expecting similar behavior as in

the independent case, the extra assumption of dependence will force us to rely on the

spectral density form of the covariance function, along with several asymptotic results,

to show this. We will start by proving two theorems which discuss the accumulation

of zeros around the unit circle.

Theorem 4.1.2. Let D(r) be the disk of radius r centered at 0. For any s ≥ 0 we

have

lim
n→∞

E

[
1

n + 1
νn

(
D
(
e−s/2(n+1)

))]
=

1− e−s(1 + s)

s(1− e−s)

∼ 1

2
− s

3
, s → 0.

Proof. From (4.3) we have

E[νn (D(r))] =
1

2πi

∫
∂D(r)

1

z
F (z)dz

=
1

2π

∫ 2π

0

F (reiθ)dθ,

where

r = e−s/2(n+1), s ≥ 0, z = reiθ.

Rewriting (4.4) we can express F (z) as

(4.10) F (z) =
B1 + B0B1−A0A1

D0

B0 + D0

.

We will start by determining the asymptotic behavior of B1 and B0. By then

showing that the contribution from the A0A1 term vanishes in the limit, we will have
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the asymptotic behavior for F (z) as a whole. Note that we can assume θ is bounded

some small distance away from −π and π. Otherwise, using the fact that

Γ(k) =

∫ π

−π

e−ikφf(φ)dφ =

∫ 2π

0

e−ikφf(φ)dφ =

∫ 0

−2π

e−ikφf(φ)dφ

for any k, the following results will hold with only minor changes to the arguments

used.

For B0 we have

B0(z) =

∫ π

−π

f(φ)
1− e−s/2ei(n+1)(θ−φ)

1− e−s/2(n+1)ei(θ−φ)
· 1− e−s/2ei(n+1)(φ−θ)

1− e−s/2(n+1)ei(φ−θ)
dφ

=

∫ θ+(n+1)−
1
4

θ−(n+1)−
1
4

f(φ)
1− 2e−s/2 cos [(n + 1)(θ − φ)] + e−s

1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1)
dφ

+

∫ π

θ+(n+1)−
1
4

f(φ)
1− 2e−s/2 cos [(n + 1)(θ − φ)] + e−s

1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1)
dφ

+

∫ θ−(n+1)−
1
4

−π

f(φ)
1− 2e−s/2 cos [(n + 1)(θ − φ)] + e−s

1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1)
dφ

= B1
0 + B2

0 + B3
0 .

Starting with B1
0 ,

B1
0 ∼

∫ θ+(n+1)−
1
4

θ

2cnf(φ)dφ

2− 2(1− s
2(n+1)

+ s2

8(n+1)2
)(1− (θ−φ)2

2
)− s

n+1
+ s2

2(n+1)2

∼ 2cnf(θ)

∫ θ+(n+1)−
1
4

θ

dφ

(θ − φ)2 + s2

4(n+1)2

= cnf(θ)
4

s
(n + 1) arctan

(
2

s
(n + 1)(φ− θ)

)∣∣∣∣θ+(n+1)−1/4

θ

∼ cnf(θ)
2π

s
(n + 1).

We will next show that B2
0 and B3

0 are small compared to B1
0 . For B2

0 ,

B2
0 ∼

∫ π

θ+(n+1)−
1
4

cf(φ)

1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1)
dφ

≤
∫ π

θ+(n+1)−
1
4

cf(φ)

1− 2e−s/2(n+1) cos (−(n + 1)−1/4) + e−s/(n+1)
dφ

∼
∫ π

θ+(n+1)−
1
4

cf(φ)

(n + 1)−1/2 + s2

4(n+1)2

dφ
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∼ c(n + 1)1/2

= o
(
B1

0

)
.

Similarly, we can also show that B3
0 = o (B1

0). It follows that

B0(z) ∼ B1
0 ∼ cnf(θ)

2π

s
(n + 1).

In the independent case f(θ) ≡ 1
2π

. Setting the quantity above equal to the asymptotic

value of B0(z) in the independent case, (n + 1)1−e−s

s
, allows us to solve for cn. Thus,

(n + 1)
cn

s
= (n + 1)

1− e−s

s
⇒ cn = 1− e−s,

and we can now conclude that

lim
n→∞

1

n + 1
B0 = 2π

1− e−s

s
f(θ).

Next, for B1,

B1(z) =

∫ π

−π

[(
zn+1e−i(n+1)φ − 1

)
(n + 1)

(
zeiφ

)n+1

(1− ze−iφ) (1− zeiφ)

+

∣∣1− zn+1e−i(n+1)φ
∣∣2 (zeiφ − |z|2

)
(1− ze−iφ)2 (1− zeiφ)2

]
f(φ)dφ

=

∫ π

−π

f(φ)

[
−(n + 1)

(
e−s/2ei(n+1)(φ−θ) − e−s

)
(1− e−s/2(n+1)ei(θ−φ)) (1− e−s/2(n+1)ei(φ−θ))

+

∣∣1− e−s/2ei(n+1)(θ−φ)
∣∣2 (e−s/2(n+1)ei(φ−θ) − e−s/(n+1)

)
(1− e−s/2(n+1)ei(θ−φ))

2
(1− e−s/2(n+1)ei(φ−θ))

2

]
dφ

∼
∫ π

−π

f(φ)
c1
n · (n + 1)

(1− e−s/2(n+1)ei(θ−φ)) (1− e−s/2(n+1)ei(φ−θ))
dφ

+

∫ π

−π

c2
nf(φ)

(
e−s/2(n+1)ei(φ−θ) − e−s/(n+1)

)
(1− e−s/2(n+1)ei(θ−φ))

2
(1− e−s/2(n+1)ei(φ−θ))

2dφ

= B1
1 + B2

1 .

From our work on B0 we know that

B1
1 ∼ c1

n(n + 1)2f(θ)
2π

s
.
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To handle B2
1 we can apply a procedure similar to the one used on B1

0 and B2
0 . We

then have

B2
1 ∼

∫ θ+(n+1)−
1
4

θ−(n+1)−
1
4

f(φ)
c2
n

(
e−s/2(n+1)ei(φ−θ) − e−s/(n+1)

)
(1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1))

2dφ

∼ 2f(θ)

∫ θ+(n+1)−
1
4

θ

c2
n

(
s

2(n+1)
− (θ−φ)2

2

)
(
(θ − φ)2 + s2

4(n+1)2

)2dφ

= 2f(θ)
c2
n(n + 1)2

s2

[
−(4s(n + 1) + s2)(θ − φ)

s2 + 4(n + 1)2(θ − φ)2

+

(
s

2(n + 1)
− 2

)
arctan

(
2

s
(n + 1)(θ − φ)

)]∣∣∣∣θ+(n+1)−
1
4

θ

∼ 2πf(θ)(n + 1)2 c2
n

s2
.

Since the asymptotic value of B1(z) in the independent case is (n + 1)2 1−e−s(1+s)
s2 ,

we can again solve for the constants using the same procedure as before. Thus,

c1
n

s
+

c2
n

s2
=

1− e−s(1 + s)

s2
,

from which it follows that

lim
n→∞

1

(n + 1)2
B1 = 2π

1− e−s(1 + s)

s2
f(θ).

Lastly, since f is real-valued,

lim
n→∞

1

(n + 1)2
B1 = 2π

1− e−s(1 + s)

s2
f(θ)

= 2π
1− e−s(1 + s)

s2
f(θ),

as well.

Our next step is to show that

(4.11) lim
n→∞

A0A1

(n + 1)3
= 0.

Now, for small θ + φ we have

1

1− ze−iφ
=

1− zeiφ

(1− ze−iφ) (1− zeiφ)
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=
1− e−s/2(n+1) [cos (θ − φ)− i sin (θ − φ)]

1 + e−s/(n+1) − 2e−s/2(n+1) cos (θ − φ)

∼
(θ−φ)2

2
+ s

2(n+1)
+ i(θ − φ)

(θ − φ)2 + s
2(n+1)

.

Similarly, for θ − φ small we have

1

1− zeiφ
=

1− ze−iφ

(1− zeiφ) (1− ze−iφ)

=
1− e−s/2(n+1) [cos (θ + φ)− i sin (θ + φ)]

1 + e−s/(n+1) − 2e−s/2(n+1) cos (θ + φ)

∼
(θ+φ)2

2
+ s

2(n+1)
+ i(θ + φ)

(θ + φ)2 + s
2(n+1)

.

For A0 we then have the inequality

A0 ∼
∫ −θ+ 1

log (n+1)

−θ− 1
log (n+1)

f(φ)
c1

1− ze−iφ
dφ +

∫ −θ+ 1
log (n+1)

−θ− 1
log (n+1)

f(φ)
c2

1− zeiφ
dφ

∼ c1

∫ θ+ 1
log (n+1)

θ− 1
log (n+1)

(θ−φ)2

2
+ s

2(n+1)
+ i(θ − φ)

(θ − φ)2 + s
2(n+1)

f(φ)dφ

+ c2

∫ θ+ 1
log (n+1)

θ− 1
log (n+1)

(θ+φ)2

2
+ s

2(n+1)
+ i(θ + φ)

(θ + φ)2 + s
2(n+1)

f(φ)dφ

≤ c log (n + 1).

Similarly, we can also bound A1 from above:

A1 ∼
∫ −θ+ 1

log (n+1)

−θ− 1
log (n+1)

[
c1(n + 1)

1− zeiφ
+

c2

(1− zeiφ)2

]
f(φ)dφ

+

∫ θ+ 1
log (n+1)

θ− 1
log (n+1)

c3(n + 1)

1− ze−iφ
f(φ)dφ

∼
∫ −θ+ 1

log (n+1)

−θ− 1
log (n+1)

c1(n + 1)

(θ+φ)2

2
+ s

2(n+1)
+ i(θ + φ)

(θ + φ)2 + s
2(n+1)

+ c2

 (θ+φ)2

2
+ s

2(n+1)
+ i(θ + φ)

(θ + φ)2 + s
2(n+1)

2 f(φ)dφ

+

∫ θ+ 1
log (n+1)

θ− 1
log (n+1)

c3(n + 1)

(θ−φ)2

2
+ s

2(n+1)
+ i(θ − φ)

(θ − φ)2 + s
2(n+1)

f(φ)dφ
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≤ c(n + 1) log (n + 1).

From here it is easy to see that (4.11) holds. Combining these results and applying

the Lebesgue dominated convergence theorem (see [21] for a reference) leads to the

formula

lim
n→∞

E
1

n + 1
νn (B(r)) =

1

2π

∫ 2π

0

lim
n→∞

1

n + 1
F (z)dθ

=
1

2π

∫ 2π

0

2π 1−e−s(1+s)
s2 f(θ) + 2π 1−e−s(1+s)

s2 f(θ)

4π 1−e−s

s
f(θ)

dφ

=
1− e−s(1 + s)

s(1− e−s)

∼ 1

2
− s

3
, s → 0,

as claimed.

Theorem 4.1.3. Let r = e−1/2(k+1). Then,

lim
n→∞

E[νn (D(r))] ∼ k + 1,

as k →∞.

Proof. Applying (4.3) gives us

E[νn(D(r))] =
1

2π

∫ 2π

0

F (reiθ)dθ,

from which it follows (along with the Lebesgue dominated convergence theorem) that

lim
n→∞

E[νn(D(r))] =
1

2π

∫ 2π

0

lim
n→∞

F (reiθ)dθ.

Applying the Lebesgue dominated convergence theorem once more, we then have the

formulas

A = lim
n→∞

A0 =

∫ π

−π

f(φ)
1

1− ze−iφ
· 1

1− zeiφ
dφ,

B = lim
n→∞

B0 =

∫ π

−π

f(φ)
1

1− ze−iφ
· 1

1− zeiφ
dφ,

A′ = lim
n→∞

A1 =

∫ π

−π

f(φ)
1

1− ze−iφ
· zeiφ

(1− zeiφ)2
dφ,
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B′ = lim
n→∞

B1 =

∫ π

−π

f(φ)
1

1− ze−iφ
· zeiφ

(1− zeiφ)2
dφ,

D = lim
n→∞

D0 =
√

B2 − |A|2.

It follows that

lim
n→∞

F (z) =
B′D + BB′ − AA′

D(B + D)
.

Adding and subtracting B′

B
|A|2 from the denominator gives

(4.12) lim
n→∞

F (z) =
B′

B
+

|A|2

D(B + D)

(
B′

B
− A′

A

)
.

Now, recall that r = e−1/2(k+1). We will next show that the second term stays

bounded as k increases. If we repeat the analysis done in the proof of Theorem 4.1.2

for A0, A1, B0 and B1 on the terms A, A′, B and B′, respectively, we will obtain

similar results. That is,

B ∼ 4πf(θ)(k + 1),

B′ ∼ 4πf(θ)(k + 1)2,

A ≤ c1 log (k + 1),

A′ ≤ c2(k + 1) log (k + 1),

(4.13)

for c1, c2 > 0, as k →∞. Applying these results gives the inequality

|A|2

D(B + D)

(
B′

B
− A′

A

)
≤ C

(log (k + 1))2(k + 1)2

(k + 1)3

≤ C.

Thus, letting k increase we can see that the second term is bounded by a constant.

Furthermore, if we plug in these values for B and B′ into (4.12), we have

lim
n→∞

F (z) ∼ k + 1,

as k →∞. The claim then follows.

Theorem 4.1.4. Let C(θ1, θ2) be the cone in the complex plane consisting of all points

with arguments between θ1 and θ2. Furthermore, assume C(θ1, θ2) does not intersect

the real axis. Then

lim
n→∞

1

n + 1
E[νn(C(θ1, θ2))] =

θ1 − θ2

2π
.

In other words, the zeros are distributed in the complex plane uniformly in the angle.
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Proof. It is sufficient to compute the limit for the intersection of

C(θ1, θ2) with the unit disk, and then multiply the result by two. Let R(θ1, θ2)

denote the polar rectangle resulting from this intersection. Applying (4.3) once again

we have

E[νn(R(θ1, θ2))] =
1

2πi

∫
∂Ω

1

z
F (z)dz

=
1

2πi

∫ 1

0

1

r
F (reiθ1)dr +

1

2π

∫ θ2

θ1

F (eiθ)dθ

+
1

2πi

∫ 0

1

1

r
F (reiθ2)dr

=
1

2πi

∫ 1

0

1

r

[
F (reiθ1)− F (reiθ2)

]
dr +

1

2π

∫ θ2

θ1

F (eiθ)dθ.

(4.14)

Our initial step will be to show that the first integral vanishes in the limit. Let r > 0

and rewrite F in the form

F (z) =
B1

D0

− A0A1

D0(B0 + D0)
.

Then,

F (reiθ1)− F (reiθ2) ∼ B1(re
iθ1)

D0(reiθ1)
− B1(re

iθ2)

D0(reiθ2)

= B1(r)
D0(re

iθ2)−D0(re
iθ1)

D0(reiθ1)D0(reiθ2)
,

since B1 depends on r only. Analyzing the numerator we have

(4.15) D0(re
iθ2)−D0(re

iθ1)

=
√

(n + 1)2 − |A0(reiθ1)|2 −
√

(n + 1)2 − |A0(reiθ2)|2

= (n + 1)n

(√
1− |A0(reiθ1)|2

n2
−
√

1− |A0(reiθ2)|2
n2

)

∼ n

(
|A0(re

iθ1)|2

2n2
− |A0(re

iθ2)|2

2n2

)
=

1

2n

(
|A0(re

iθ1)|2 − |A0(re
iθ2)|2

)
,

from which it then follows that

F (reiθ1)− F (reiθ2) ∼ B1(r)

D0(reiθ1)D0(reiθ2)
· 1

2n

(
|A0(re

iθ1)|2 − |A0(re
iθ2)|2

)
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∼ c
(
|A0(re

iθ1)|2 − |A0(re
iθ2)|2

)
.

Thus, for r > 0, 1
n

times the integrand vanishes in the limit. Now, to consider the

case when r = 0 we will first need the following limits:

lim
r→0

B0 = lim
r→0

A0 = 1,

lim
r→0

D0 = 0,

lim
r→0

1

r
B1 = 1.

Letting r → 0 we will also need the expressions

B0B1 − A0A1 ∼ r2(1− e2iθ)− r2(1− e2iθ)

(∫ π

−π

f(φ)eiφdφ

)2

= r2(1− e2iθ)

[
1−

(∫ π

−π

f(φ)eiφdφ

)2
]

,

(4.16)

and

B2
0 − |A0|2 ∼ 2r2(1− cos 2θ)− 2r2(1− cos 2θ)

(∫ π

−π

f(φ)eiφdφ

)2

= 4r2 sin2 θ

[
1−

(∫ π

−π

f(φ)eiφdφ

)2
]

.

(4.17)

Combining (4.16) and (4.17), and recalling (4.2), we then have

lim
r→0

1

r

B0B1 − A0A1

D0

∼ lim
r→0

r(1− e2iθ)

[
1−

(∫ π

−π
f(φ)eiφdφ

)2
]

2r sin θ

√
1−

(∫ π

−π
f(φ)eiφdφ

)2

=
(1− e2iθ)

sin θ

√
1−

(∫ π

−π

f(φ)eiφdφ

)2

,

which leads to the final expression

lim
r→0

1

r
F (reiθ) =

1

r

B1 + B0B1−A0A1

D0

B0 + D0

= 1 +
(1− e2iθ)

sin θ

√
1−

(∫ π

−π

f(φ)eiφdφ

)2

.

Thus, even at r = 0 the integrand is bounded in n. Combining these results, we can

conclude that the contribution from the first integral disappears in the limit.
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We will now derive the asymptotic value for the second integral in (4.14). For

z = eiθ we have

B0(e
iθ) =

∫ π

−π

f(φ)
1− ei(n+1)(θ−φ)

1− ei(θ−φ)
· 1− ei(n+1)(φ−θ)

1− ei(φ−θ)
dφ

=

∫ π

−π

f(φ)
1− ei(n+1)(θ−φ) − ei(n+1)(φ−θ) + 1

1− ei(θ−φ) − ei(φ−θ) + 1
dφ

=

∫ π

−π

f(φ)
1− cos ((n + 1)(θ − φ))

1− cos (θ − φ)
dφ

=

∫ θ+(n+1)−1/4

θ−(n+1)−1/4

f(φ)
1− cos ((n + 1)(θ − φ))

1− cos (θ − φ)
dφ

+

∫ θ−(n+1)−1/4

−π

f(φ)
1− cos ((n + 1)(θ − φ))

1− cos (θ − φ)
dφ

+

∫ π

θ+(n+1)−1/4

f(φ)
1− cos ((n + 1)(θ − φ))

1− cos (θ − φ)
dφ

= B1
0 + B2

0 + B3
0 .

For B1
0 ,

B1
0 = 2

∫ θ+(n+1)−1/4

θ

f(φ)
1− cos ((n + 1)(θ − φ))

1− cos (θ − φ)
dφ

∼ 4f(θ)

∫ θ+(n+1)−1/4

θ

1− cos ((n + 1)(θ − φ))

(θ − φ)2
dφ

= 4f(θ)
1

φ− θ
[−1 + cos ((n + 1)(θ − φ))

+ (n + 1)(θ − φ)Si ((n + 1)(θ − φ))]

∣∣∣∣θ+(n+1)−1/4

θ

∼ −4f(θ)(n + 1)Si
(
−(n + 1)3/4

)
∼ 2πf(θ)(n + 1),

where Si(z) =
∫ z

0
sin t

t
dt. For B2

0 we have

B2
0 ≤

∫ θ−(n+1)−1/4

−π

c

1− cos ((n + 1)−1/4)
dφ

∼
∫ θ−(n+1)−1/4

−π

c
(n+1)−1/2

2

dφ

= o (n) .
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In a similar fashion we can also show that B3
0 = o (n). Thus, it follows that

(4.18) B0

(
reiθ
)

= 2πf(θ)(n + 1) + o(n).

To handle B1 we will break it up as

B1(e
iθ) =

∫ π

−π

f(φ)
−(n + 1)ei(n+1)(φ−θ) − 1

(1− ei(θ−φ)) (1− ei(φ−θ))
dφ

+

∫ π

−π

f(φ)
ei(φ−θ)

∣∣1− ei(n+1)(φ−θ)
∣∣2 (1− ei(θ−φ)

)
(1− ei(θ−φ))

2
(1− ei(φ−θ))

2 dφ

= B1
1 + B2

1 .

By our work done on B0 we know that B1
1 = πf(θ)(n + 1)2 + o(n2). Next, for B2

1 ,

B2
1 =

∫ π

−π

f(φ)
[2− 2 cos ((n + 1)(θ − φ))] (i sin(φ− θ) + cos(φ− θ)− 1)

(2− 2 cos(θ − φ))2 dφ

= −
∫ π

−π

f(φ)
1− 1 cos ((n + 1)(θ − φ))

2− 2 cos(θ − φ)
dφ

= O(n).

Thus, it now follows that

(4.19) B1(re
iθ) = πσ2eβnf(θ)(n + 1)2 + o(n2).

For A0 we have the expression

A0 =

∫ π

−π

f(φ)
1− zn+1e−i(n+1)φ

1− ze−iφ
· 1− zn+1ei(n+1)φ

1− zeiφ
dφ

∼ c1

∫ −θ+ 1
log (n+1)

−θ− 1
log (n+1)

f(φ)

(
1− zn+1ei(n+1)φ

) (
1− ze−iφ

)
|1− zeiφ|2

dφ

+ c2

∫ θ+ 1
log (n+1)

θ− 1
log (n+1)

f(φ)

(
1− zn+1e−i(n+1)φ

) (
1− zeiφ

)
|1− ze−iφ|2

dφ

∼ c1

∫ −θ+ 1
log (n+1)

−θ− 1
log (n+1)

f(φ)
− sin ((n + 1)(θ + φ)) sin (θ + φ)

2− 2 cos (θ + φ)
dφ

+ c2

∫ θ+ 1
log (n+1)

θ− 1
log (n+1)

f(φ)
− sin ((n + 1)(θ − φ)) sin (θ − φ)

2− 2 cos (θ − φ)
dφ

= O(log n).
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For A1,

A1 =

∫ π

−π

f(φ)
1− zn+1e−i(n+1)φ

1− ze−iφ

· −(n + 1)zn+1ei(n+1)φ(1− zeiφ) + zeiφ(1− zn+1ei(n+1)φ)

(1− zeiφ)2
dφ

∼ c3(n + 1)

∫ θ+ 1
log (n+1)

θ− 1
log (n+1)

f(φ)

(
1− zn+1e−i(n+1)φ

) (
1− zeiφ

)
|1− ze−iφ|2

dφ +

∫ −θ+ 1
log (n+1)

−θ− 1
log (n+1)

f(φ)

[
c1(n + 1)

(
1− ze−iφ

)
|1− zeiφ|2

+
c2

(
1− ze−iφ

)2 (
1− zn+1ei(n+1)φ

)
|1− zeiφ|4

]
dφ

∼
∫ θ+ 1

log (n+1)

θ− 1
log (n+1)

f(φ)
c3(n + 1) sin (θ − φ)

2− 2 cos (θ − φ)
dφ +

∫ −θ+ 1
log (n+1)

−θ− 1
log (n+1)

f(φ)

[
c1(n + 1) sin (θ + φ)

2− 2 cos (θ + φ)
+

c2 sin2 (θ + φ) sin ((n + 1)(θ + φ))

(2− 2 cos (θ + φ))2

]
dφ

= O ((n + 1) log (n + 1)) .

It now follows that

F (eiθ) =
B1

D0

− A0A1

D0(B0 + D0)

∼ πf(θ)n(n + 1)

2πf(θ)(n + 1)

=
n

2
.

Thus,

lim
n→∞

1

n + 1
Eνn(R(θ1, θ2)) = lim

n→∞

1

2π(n + 1)

∫ θ2

θ1

n

2
dθ

=
θ2 − θ1

4π
,

as claimed.

4.2 An Application to the GSM/EDGE Standard

for Mobile Phones

We will now focus on a problem concerning the GSM (Global System for Mobile Com-

munications)/EDGE (Enhanced Data Rates for GSM Evolution) standard for mobile
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phones. When designing digital receivers for such a system, the properties of the

so-called discrete-time overall channel impulse response becomes important. Specifi-

cally, the location of the zeros of the z-transform of the discrete-time overall channel

impulse response determines the receiver’s performance. The randomness inherent

in mobile communications results in such a z-transform being a random polynomial.

For wireless communications in urban areas it is common for the coefficients of (1)

to be mean zero complex Gaussians, with exponentially increasing or decreasing vari-

ances (see [26] and the references therein for a more complete discussion). Under

these assumptions, Schober and Gerstacker derived explicit results for the location of

the zeros when the coefficients are independent. This assumption of independence,

however, was made to facilitate the computations. In practice, the authors state that

the coefficients will only be approximately uncorrelated.

With that in mind, the goal of this section is to study the behavior of the com-

plex zeros when the coefficients are dependent mean zero complex Gaussians with

exponentially increasing or decreasing variances. Using a result from Hughes and

Nikeghbali, we will first show that, in the limit, the roots accumulate around a circle

in the complex plane, uniformly in the angle, where the radius is determined by the

coefficient variances. This behavior holds without any restrictions on the covariance

function of the coefficients and corresponds with the behavior observed by Schober

and Gerstacker in the independent case. The drawback is that this result applies only

to the limiting behavior, and it fails to give any detail as to how fast this occurs or

how close to the circle the zeros accumulate. Thus, to get a more detailed analysis

we will use the techniques developed by Shepp and Vanderbei. In order for us to

apply these techniques when the coefficients are dependent, some concessions must

be made. Namely, it will be necessary for us to assume that the covariance function of

the coefficients is absolutely summable and that the spectral density does not vanish.

Another way to interpret these conditions is that we are requiring fast enough decay

for the covariance of the coefficients.
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4.2.1 Exponentially Increasing/Decreasing Variances

We will start by giving a result from Hughes and Nikeghbali [15]. Let Pn(z) be of

the form given in (1), and let νn(Ω) be the number of zeros of Pn(z) in the set Ω.

Also, for 0 < r < 1 define the annulus a(r) = {z ∈ C : 1− r ≤ |z| ≤ 1/(1− r)}, and

for 0 ≤ θ1 < θ2 ≤ 2π let C(θ1, θ2) be the cone in the complex plane consisting of all

points with arguments between θ1 and θ2.

Theorem 4.2.1 (Hughes and Nikeghbali). Assume the coefficients of Pn(z) are com-

plex Gaussians with mean zero and unit variance. Then there exists a deterministic

positive sequence (αn), subject to 0 < αn ≤ n for all n and αn = o(n) as n → ∞,

such that

lim
n→∞

1

n
νn

(
a
(αn

n

))
= 1, a.s.

and

lim
n→∞

1

n
νn (C(θ1, θ2)) =

θ2 − θ1

2π
, a.s.

In other words, the above theorem tells us that for mean zero complex Gaussian

coefficients with unit variance, the zeros will accumulate around the unit circle in the

limit, uniformly in the angle. Furthermore, this occurs without any restrictions on

the dependence of the coefficients. Now, consider the random polynomial

P̃n(z) =
n∑

k=0

σeβ(n−k)/2Zkz
k,

where the Zk are mean zero complex Gaussians with unit variance, σ > 0, and

β ∈ R. Thus, the coefficients now have exponentially growing or decaying variances,

depending on the value of β. Let z0 be a root of Pn(z). Then,

P̃n(eβ/2z0) = σ
(
eβn/2Z0 + eβ(n−1)/2Z1e

β/2z0 + . . . + Zn

(
eβ/2z0

)n)
= σeβn/2 (Z0 + Z1z0 + . . . + Znz

n
0 )

= 0,

and it follows that eβ/2z0 is a root of P̃n(z). Applying Theorem 4.2.1, we can then

conclude that the roots of P̃n(z) accumulate around a circle of radius eβ/2, uniformly
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in the angle. Furthermore, the fact that the expected number of zeros of Pn(z) inside

the unit circle is equal to the expected number outside implies the same property for

P̃n(z) and the circle of radius eβ/2.

To summarize, when the coefficients are dependent complex Gaussians with mean

zero and exponentially increasing or decreasing variances, we have shown that the

zeros will accumulate around the circle of radius eβ/2 in the limit. Additionally, they

will do so uniformly in the angle, and the expected number of zeros inside the circle

will be equal to the expected number outside. The rest of this section’s goal will

be to give a more thorough analysis of this behavior. This will be accomplished by

imposing some restrictions on the covariance function of the coefficients, which will

then allow us to use Shepp and Vanderbei’s techniques to give this more detailed

discussion.

4.2.2 Derivation of a Formula for Computing Zeros

We will assume from now on that Pn(z) has the form

(4.20) Pn(z) =
n∑

k=0

(Uk + iVk)z
k =

n∑
k=0

Zkz
k,

where the coefficients are complex Gaussians with mean zero. In addition, they will

have exponentially increasing or decreasing variances; that is,

(4.21) E
[
ZkZk

]
= σ2

k = σ2eβ(n−k),

for 0 ≤ k ≤ n, σ > 0, and β ∈ R. In [26] the coefficients were taken to be indepen-

dent to simplify the calculations. We will now assume some dependence among the

coefficients. Following the explanation given on page 893 in [27], the covariance will

be given by

E
[
ZkZj

]
= E [(Uk + iVk)(Uj − iVj)]

= E [UkUj] + E [VkVj]

=
σ2eβ(2n−k−j)/2

2
Γ(k − j) +

σ2eβ(2n−k−j)/2

2
Γ(k − j)

= σ2eβ(2n−k−j)/2Γ(k − j).

(4.22)
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Thus,

(4.23) E [UkUj] = E [VkVj] =
1

2
E
[
ZkZj

]
.

Two additional expressions that we will need are

B0(z) = E
[
Pn(z)Pn(z)

]
,

B1(z) = E
[
Pn(z)zP ′

n(z)
]
.

(4.24)

One main difference from the independent case is that these expressions are not

straightforward to compute; they depend on the values of the spectral density. To

apply these formulas we will rely heavily on deriving asymptotic values throughout

this paper. As before, let νn(Ω) be the number of zeros of Pn(z) in the set Ω. We are

now ready to state our first theorem, which extends Shepp and Vanderbei’s result to

our particular case.

Theorem 4.2.2. For any region Ω ∈ C whose boundary intersects the real axis at

most finitely many times we have

(4.25) E[νn(Ω)] =
1

2πi

∫
∂Ω

1

z
F (z)dz,

where

(4.26) F (z) =
B1(z)

B0(z)
.

Proof. As noted by the authors in [28], the proof used for real Gaussians can be

applied to complex Gaussians, and in which case the computations will simplify. The

first part of this proof will carry out these simplified calculations, while the second

part will apply the spectral density form of the covariance function to compute the

needed expressions.

To start, we can use the argument principle to compute νn(Ω) (see [6] for a refer-

ence). It follows that

νn(Ω) =
1

2πi

∫
∂Ω

P ′
n(z)

Pn(z)
dz.

By applying Fubini’s Theorem [22] and a result of Hammersley [14] on the distribution

of the zeros of a random polynomial with complex Gaussian coefficients, we can take
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the expectation and move it inside the integral. Thus, we arrive at the formula

E[νn(Ω)] =
1

2πi

∫
∂Ω

E

[
P ′

n(z)

Pn(z)

]
dz

=
1

2πi

∫
∂Ω

1

z
E

[
zP ′

n(z)

Pn(z)

]
dz.

The rest of the proof will be devoted to deriving the formula for F (z) = E
[

zP ′
n(z)

Pn(z)

]
given in (4.26).

Following the procedure in [28], we can decompose Pn(z) and zP ′
n(z) into their

real and imaginary parts. We have

Pn(z) = Y1 + iY2,

zP ′
n(z) = Y3 + iY4,

where

(4.27)
Y1 =

∑n
j=0 ajUj − bjVj, Y2 =

∑n
j=0 bjUj + ajVj,

Y3 =
∑n

j=0 cjUj − djVj, Y4 =
∑n

j=0 djUj + cjVj.

Also,

(4.28)

aj = Re(zj) = zj+zj

2
,

bj = Im(zj) = zj−zj

2i
,

cj = jaj,

dj = jbj.

Let M denote the covariance matrix of Y = [ Y1 Y2 Y3 Y4 ]T . That is,

(4.29) M =


E [Y 2

1 ] 0 E [Y3Y1] E [Y4Y1]

0 E [Y 2
2 ] E [Y3Y2] E [Y4Y2]

E [Y3Y1] E [Y3Y2] E [Y 2
3 ] 0

E [Y4Y1] E [Y4Y2] 0 E [Y 2
4 ]

 .

Let L be the Cholesky factor for M , where

(4.30) L =


l11 0 0 0

0 l22 0 0

l31 l32 l33 0

l41 l42 l43 l44

 .
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We then have the decomposition

E
[
Y Y T

]
= M = LLT = E

[
LWW T LT

]
,

where W = [ W1 W2 W3 W4 ]T is a vector of four independent standard normal

random variables. In addition to L being lower triangular, notice that the above

series of equalities also implies that Y =d LW . That is, Y and LW are equal in

distribution. Using these results, we have

zP ′
n(z)

Pn(z)
=

Y3 + iY4

Y1 + iY2

=d
(l31 + il41)W1 + (l32 + il42)W2 + (l33 + il43)W3 + il44W4

l11W1 + il22W2

.

From here, after a series of manipulations and calculations (the details of which are

in [28]), we arrive at the following formula:

F (z) = E

[
zP ′

n(z)

Pn(z)

]
=

l32 − l41 + i(l31 + l42)

i(l11 + l22)
.

(4.31)

Now, from (4.23) and (4.27) notice that

E
[
Y 2

1

]
=

n∑
k=0

n∑
j=0

(akajE [UkUj] + bkbjE [VkVj])

=
n∑

k=0

n∑
j=0

(akajE [VkVj] + bkbjE [UkUj])

= E
[
Y 2

2

]
,

E [Y3Y1] =
n∑

k=0

n∑
j=0

(ckajE [UkUj] + dkbjE [VkVj])

=
n∑

k=0

n∑
j=0

(ckajE [VkVj] + dkbjE [UkUj])

= E [Y4Y2] ,

and

E [Y3Y2] =
n∑

k=0

n∑
j=0

(bkcjE [UkUj]− akdjE [VkVj])
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= −
n∑

k=0

n∑
j=0

(akdjE [UkUj]− bkcjE [VkVj])

= −E [Y4Y1] .

Thus, using (4.29) and (4.30), we can solve for the coefficients of L to get

l11 =
E[Y 2

1 ]√
E[Y 2

1 ]
, l22 =

E[Y 2
1 ]√

E[Y 2
1 ]

,

l31 = E[Y3Y1]√
E[Y 2

1 ]
, l32 = E[Y3Y2]√

E[Y 2
1 ]

,

l41 = −E[Y3Y2]√
E[Y 2

1 ]
, l42 = E[Y3Y1]√

E[Y 2
1 ]

.

Plugging these into (4.31), it follows that

(4.32) F (z) =
E[Y3Y2] + iE[Y3Y1]

iE[Y 2
1 ]

.

We will next derive expressions for E[Y 2
1 ], E[Y3Y1], and E[Y3Y2]. By (1.2), (4.24),

(4.21), and (4.22), we have formulas for the following covariances:

B0(z) =
n∑

k=0

n∑
j=0

zkzjE
[
ZkZj

]
=

n∑
k=0

n∑
j=0

zkzjσ2eβ(2n−k−j)/2Γ(k − j)

= σ2eβn

n∑
k=0

n∑
j=0

∫ π

−π

f(φ)e−i(k−j)φzke−βk/2zje−βj/2dφ

= σ2eβn

∫ π

−π

f(φ)
n∑

k=0

n∑
j=0

(
e−iφze−β/2

)k (
eiφze−β/2

)j
dφ

= σ2eβn

∫ π

−π

f(φ)
1− (ze−β/2)n+1e−i(n+1)φ

1− ze−β/2e−iφ

· 1− (ze−β/2)n+1ei(n+1)φ

1− ze−β/2eiφ
dφ,

(4.33)

B1(z) =
n∑

k=0

n∑
j=0

jzkzjE
[
ZkZj

]
=

n∑
k=0

n∑
j=0

jzkzjσ2eβ(2n−k−j)/2Γ(k − j)

= σ2eβn

n∑
k=0

n∑
j=0

∫ π

−π

f(φ)e−i(k−j)φzke−βk/2jzje−βj/2dφ

= σ2eβn

∫ π

−π

f(φ)
n∑

k=0

n∑
j=0

(
e−iφze−β/2

)k
j
(
eiφze−β/2

)j
dφ

(4.34)
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= σ2eβn

∫ π

−π

f(φ)
1− (ze−β/2)n+1e−i(n+1)φ

(1− ze−β/2e−iφ)(1− ze−β/2eiφ)2

·
[
−(n + 1)(ze−β/2)n+1ei(n+1)φ(1− ze−β/2eiφ)

+ze−β/2eiφ(1− (ze−β/2)n+1ei(n+1)φ)
]
dφ.

Using (4.27) and (4.28), we then have

E
[
Y 2

1

]
=

n∑
k=0

n∑
j=0

(akajE[UkUj] + bkbjE[VkVj])

=
n∑

k=0

n∑
j=0

1

2

(
zkzj + zkzj

) 1

2
E
[
ZkZj

]
=

1

4

n∑
k=0

n∑
j=0

(
zkzjE

[
ZkZj

]
+ zkzjE

[
ZkZj

])
=

1

2
B0(z),

(4.35)

since E[ZkZj] = E[ZkZj]. Similarly,

E [Y3Y1] =
n∑

k=0

n∑
j=0

(jakajE[UkUj] + jbkbjE[VkVj])

=
n∑

k=0

n∑
j=0

1

2
j
(
zkzj + zkzj

) 1

2
E
[
ZkZj

]
=

1

4

n∑
k=0

n∑
j=0

(
jzkzjE

[
ZkZj

]
+ jzkzjE

[
ZkZj

])
=

1

4

[
B1(z) + B1(z)

]
,

(4.36)

and

E [Y3Y2] =
n∑

k=0

n∑
j=0

(jbkajE [UkUj]− jakbjE [VkVj])

=
n∑

k=0

n∑
j=0

1

2i
j
(
zkzj − z̄kzj

) 1

2
E
[
ZkZj

]
=

1

4i

n∑
k=0

n∑
j=0

(
jzkzjE

[
ZkZj

]
− jz̄kzjE

[
ZkZj

])
=
−i

4

[
B1(z)−B1(z)

]
.

(4.37)

Plugging (4.35), (4.36), and (4.37) into (4.32) then gives

80



F (z) =
B1(z)

B0(z)
,

as claimed.

4.2.3 Detailed Results on the Distribution of Zeros

Once we have verified Shepp and Vanderbei’s formula for the expected number of

zeros when some dependence is assumed among the coefficients, we can discuss some

applications. We will proceed as they did, proving a couple of results which illustrate

the behavior of the complex zeros. While we are expecting similar behavior as in

the independent case, the extra assumption of dependence will force us to rely on

the spectral density form of the covariance function, along with several asymptotic

results, to show this. We will prove two theorems that give a more detailed description

of the accumulation of zeros around the circle of radius eβ/2.

Theorem 4.2.3. Let D(r) be the disk of radius r centered at 0. For any s ≥ 0 we

have

E
[
νn

(
D
(
eβ/2−s/2(n+1)

))]
∼ −(n + 1)e−s

1− e−s
+

e−s/(n+1)

1− e−s/(n+1)

∼ (n + 1)
1− e−s(1 + s)

s(1− e−s)
,

as n → ∞. Note that the first line is an equality in the independent case. Letting

s → 0, it follows that

∼ (n + 1)

(
1

2
− s

3

)
.

Proof. From (4.25) we have

E[νn (D(r))] =
1

2πi

∫
∂D(r)

1

z
F (z)dz

=
1

2π

∫ 2π

0

F (reiθ)dθ,

(4.38)

where

r = eβ/2−s/2(n+1), s ≥ 0, z = reiθ,
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and F is as in (4.26). We will need to determine the asymptotic behavior of B1(z)

and B0(z). Note that we can assume θ is bounded some small distance away from

−π and π. Otherwise, using the fact that

Γ(k) =

∫ π

−π

e−ikφf(φ)dφ =

∫ 2π

0

e−ikφf(φ)dφ =

∫ 0

−2π

e−ikφf(φ)dφ

for any k, the following results will hold with only minor changes to the arguments

used.

Starting first with B0(z) we have

B0(z) = σ2eβn

∫ π

−π

f(φ)
1− e−s/2ei(n+1)(θ−φ)

1− e−s/2(n+1)ei(θ−φ)
· 1− e−s/2ei(n+1)(φ−θ)

1− e−s/2(n+1)ei(φ−θ)
dφ

= σ2eβn

∫ θ+(n+1)−
1
4

θ−(n+1)−
1
4

f(φ)
1− 2e−s/2 cos [(n + 1)(θ − φ)] + e−s

1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1)
dφ

+ σ2eβn

∫ π

θ+(n+1)−
1
4

f(φ)
1− 2e−s/2 cos [(n + 1)(θ − φ)] + e−s

1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1)
dφ

+ σ2eβn

∫ θ−(n+1)−
1
4

−π

f(φ)
1− 2e−s/2 cos [(n + 1)(θ − φ)] + e−s

1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1)
dφ

= B1
0 + B2

0 + B3
0 .

For B1
0 we have,

B1
0 ∼ 2σ2eβn

∫ θ+(n+1)−
1
4

θ

cnf(φ)

·

(
1

2− 2(1− s
2(n+1)

+ s2

8(n+1)2
)(1− (θ−φ)2

2
)− s

n+1
+ s2

2(n+1)2

)
dφ

∼ 2cnσ
2eβnf(θ)

∫ θ+(n+1)−
1
4

θ

dφ

(θ − φ)2 + s2

4(n+1)2

= cnσ
2eβnf(θ)

4

s
(n + 1) arctan

(
2

s
(n + 1)(φ− θ)

)∣∣∣∣θ+(n+1)−1/4

θ

∼ cnσ
2eβnf(θ)

2π

s
(n + 1).

We will next show that B2
0 and B3

0 are small compared to B1
0 . For B2

0 ,

B2
0 ∼ σ2eβn

∫ π

θ+(n+1)−
1
4

cf(φ)

1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1)
dφ
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≤ σ2eβn

∫ π

θ+(n+1)−
1
4

cf(φ)

1− 2e−s/2(n+1) cos (−(n + 1)−1/4) + e−s/(n+1)
dφ

∼ σ2eβn

∫ π

θ+(n+1)−
1
4

cf(φ)

(n + 1)−1/2 + s2

4(n+1)2

dφ

∼ σ2eβnc(n + 1)1/2

= o
(
B1

0

)
.

Similarly, we can also show that B3
0 = o (B1

0). It follows that

B0(z) ∼ B1
0 ∼ cnσ

2eβnf(θ)
2π

s
(n + 1).

In the independent case f(θ) ≡ 1
2π

. Setting the quantity above equal to the value of

B0(z) in the independent case, σ2eβn 1−e−s

1−e−s/(n+1) , allows us to solve for cn. Thus,

σ2eβn(n + 1)
cn

s
∼ σ2eβn 1− e−s

1− e−s/(n+1)
⇒ cn =

s

n + 1
· 1− e−s

1− e−s/(n+1)
,

and we have now shown that

(4.39) B0(z) ∼ 2πσ2eβn 1− e−s

1− e−s/(n+1)
f(θ).

Next, for B1(z) we have

B1(z) = σ2eβn

∫ π

−π

[(
(ze−β/2)n+1e−i(n+1)φ − 1

)
(n + 1)

(
ze−β/2eiφ

)n+1

(1− ze−β/2e−iφ) (1− ze−β/2eiφ)

+

∣∣∣1− (ze−β/2
)n+1

e−i(n+1)φ
∣∣∣2 (ze−β/2eiφ − |z|2e−β

)
(1− ze−β/2e−iφ)

2
(1− ze−β/2eiφ)

2

 f(φ)dφ

= σ2eβn

∫ π

−π

f(φ)

[
−(n + 1)

(
e−s/2ei(n+1)(φ−θ) − e−s

)
(1− e−s/2(n+1)ei(θ−φ)) (1− e−s/2(n+1)ei(φ−θ))

+

∣∣1− e−s/2ei(n+1)(θ−φ)
∣∣2 (e−s/2(n+1)ei(φ−θ) − e−s/(n+1)

)
(1− e−s/2(n+1)ei(θ−φ))

2
(1− e−s/2(n+1)ei(φ−θ))

2

]
dφ

∼ σ2eβn

∫ π

−π

f(φ)
c1
n · (n + 1)

(1− e−s/2(n+1)ei(θ−φ)) (1− e−s/2(n+1)ei(φ−θ))
dφ

+ σ2eβn

∫ π

−π

c2
nf(φ)

(
e−s/2(n+1)ei(φ−θ) − e−s/(n+1)

)
(1− e−s/2(n+1)ei(θ−φ))

2
(1− e−s/2(n+1)ei(φ−θ))

2dφ

= B1
1 + B2

1 .
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From our work on B0 we know that

B1
1 ∼ c1

nσ
2eβn(n + 1)2f(θ)

2π

s
.

To handle B2
1 we can apply a procedure similar to the one used on B1

0 and B2
0 . We

then have

B2
1 ∼ σ2eβn

∫ θ+(n+1)−
1
4

θ−(n+1)−
1
4

f(φ)
c2
n

(
e−s/2(n+1)ei(φ−θ) − e−s/(n+1)

)
(1− 2e−s/2(n+1) cos (θ − φ) + e−s/(n+1))

2dφ

∼ 2f(θ)σ2eβn

∫ θ+(n+1)−
1
4

θ

c2
n

(
s

2(n+1)
− (θ−φ)2

2

)
(
(θ − φ)2 + s2

4(n+1)2

)2dφ

= 2f(θ)σ2eβn c2
n(n + 1)2

s2

[
−(4s(n + 1) + s2)(θ − φ)

s2 + 4(n + 1)2(θ − φ)2

+

(
s

2(n + 1)
− 2

)
arctan

(
2

s
(n + 1)(θ − φ)

)]∣∣∣∣θ+(n+1)−
1
4

θ

∼ 2πσ2eβnf(θ)(n + 1)2 c2
n

s2
.

Using the fact that in the independent case

B1(z) = σ2eβn−(n + 1)e−s(1− e−s/(n+1)) + e−s/(n+1)(1− e−s)

(1− e−s/(n+1))2
,

we can again solve for the constants using the same procedure as before. Thus,

σ2eβn(n + 1)2 c1
n

s
+

c2
n

s2
∼ σ2eβn−(n + 1)e−s

(
1− e−s/(n+1)

)
+ e−s/(n+1) (1− e−s)

(1− e−s/(n+1))
2 ,

from which it follows that

(4.40) B1(z) ∼ 2πσ2eβn−(n + 1)e−s
(
1− e−s/(n+1)

)
+ e−s/(n+1) (1− e−s)

(1− e−s/(n+1))
2 f(θ).

Lastly, since f is real-valued, it is easy to see that

B1(z) ∼ B1(z)

as well. Thus, plugging (4.39) and (4.40) into (4.38) gives us

E[νn (D(r))] =
1

2π

∫ 2π

0

F (reiθ)dθ

=
1

2π

∫ 2π

0

B1(reiθ)

B0(reiθ)
dθ
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∼ 1

2π

∫ 2π

0

[
−(n + 1)e−s

1− e−s
+

e−s/(n+1)

1− e−s/(n+1)

]
dθ

=
−(n + 1)e−s

1− e−s
+

e−s/(n+1)

1− e−s/(n+1)

∼ (n + 1)
1− e−s(1 + s)

s(1− e−s)
.

Letting s → 0, we have

∼ (n + 1)

(
1

2
− s

3

)
,

as claimed.

Theorem 4.2.4. Let r = eβ/2−1/2(k+1). Then,

lim
n→∞

E[νn (D(r))] ∼ k + 1,

as k →∞.

Proof. From (4.25) we have

E[νn(D(r))] =
1

2π

∫ 2π

0

F (reiθ)dθ,

where

r = eβ/2−1/2(k+1), z = reiθ.

We will start by applying the Lebesgue dominated convergence theorem to the com-

ponents of F , which results in the formula

lim
n→∞

F (z) =
C(z)

B(z)
,

where

B(z) = lim
n→∞

e−βnB0(z) = σ2

∫ π

−π

f(φ)
1

1− ze−β/2e−iφ
· 1

1− ze−β/2eiφ
dφ,

C(z) = lim
n→∞

e−βnB1(z) = σ2

∫ π

−π

f(φ)
1

1− ze−β/2e−iφ
· ze−β/2eiφ

(1− ze−β/2eiφ)2
dφ.

(4.41)

Applying the Lebesgue dominated convergence theorem once more,

(4.42) lim
n→∞

E[νn(D(r))] =
1

2π

∫ 2π

0

lim
n→∞

F (reiθ)dθ.
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We can apply an analysis similar to the one used for B0(z) and B1(z) in the proof of

Theorem 4.2.3. Then, for B(z) we have

B(z) = σ2

∫ π

−π

f(φ)
1

(1− e−1/2(k+1)ei(θ−φ)) (1− e−1/2(k+1)ei(φ−θ))
dφ

∼ σ2

∫ θ+(k+1)−
1
4

θ−(k+1)−
1
4

f(φ)
1

1− 2e−1/2(k+1) cos (θ − φ) + e−1/(k+1)
dφ

∼ σ2f(θ)

∫ θ+(k+1)−
1
4

θ−(k+1)−
1
4

1

(θ − φ)2 + 1
4(k+1)2

dφ

∼ 2πσ2f(θ)(k + 1).

Similarly,

C(z) = σ2

∫ π

−π

f(φ)
e−1/2(k+1)ei(φ−θ) − e−1/(k+1)

(1− e−1/2(k+1)ei(θ−φ))
2
(1− e−1/2(k+1)ei(φ−θ))

2dφ

∼ σ2

∫ θ+(k+1)−
1
4

θ−(k+1)−
1
4

f(φ)
e−1/2(k+1) cos (φ− θ)− e−1/(k+1)

(1− 2e−1/2(k+1) cos (θ − φ) + e−1/(k+1))
2dφ

∼ σ2

∫ θ+(k+1)−
1
4

θ−(k+1)−
1
4

1
2(k+1)

− (θ−φ)2

2(
(θ − φ)2 + 1

4(k+1)2

)2dφ

∼ 2πσ2f(θ)(k + 1)2.

Plugging into (4.42),

lim
n→∞

E[νn(D(r))] =
1

2π

∫ π

−π

lim
n→∞

F (reiθ)dθ

=
1

2π

∫ π

−π

C(reiθ)

B(reiθ)
dθ

∼ 1

2π

∫ π

−π

2πσ2f(θ)(k + 1)2

2πσ2f(θ)(k + 1)
dθ

∼ k + 1.

4.2.4 Conclusions

What we first showed is a general result which gives an idea of the limiting behavior

of the zeros of a random polynomial that has dependent mean zero complex Gaussian
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coefficients with exponentially increasing or decreasing variances. By then adding

certain restrictions to the covariance function, we were able to derive more accurate

results, which in turn give more detailed information on the way in which this occurs.

However, even then we were only able to do this by using approximations and asymp-

totic values. Without having more specific knowledge of the covariance function and

the spectral density, we do not see a way to make these results more exact. On the

other hand, if one were to know the exact expression of the spectral density it is likely

that even more details on the specifics of the behavior could be obtained.
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Chapter 5

Random Sums of Orthogonal

Polynomials

In this chapter we will give a discussion of the zeros of random sums of orthogonal

polynomials, a discussion which is based on the work of Shiffman and Zelditch [29].

Consider a set {pk(z)} of orthogonal polynomials. Let Z0, Z1, . . . be a sequence of

i.i.d. complex Gaussians with mean zero and variance one. Then, a random sum of

orthogonal polynomials is a random polynomial of the form

(5.1) Pn(z) =
n∑

k=0

Zkpk(z).

In order to correctly formulate the results of Shiffman and Zelditch, we will need

to give a few definitions. To start, let Pn be the space of polynomials defined on C,

with degree less than or equal to n. For Ω a simply connected bounded domain in

C with real analytic boundary (which will henceforth be called a simply connected

bounded Cω domain; see [1] for further reference), we can define the inner product on

Pn by

(5.2) 〈f, g〉∂Ω,ρ :=

∫
∂Ω

f(z)g(z)ρ(z)|dz|,

where ρ is a weight function, ρ ∈ Cω(∂Ω), the space of real analytic functions on a

real analytic boundary ∂Ω.
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Now, given a compact set K ∈ C, the equilibrium measure for this set is defined

as the unique probability measure that minimizes the energy

I(µ) = −
∫

K

∫
K

log |z − w|dµ(z)dµ(w)

(see [17, 31] for further reference). This measure will be denoted as µK . If {pk(z)}

is an orthonormal basis of Pn orthogonalized over a domain Ω satisfying certain

properties, Shiffman and Zelditch showed that the zeros of Pn(z) will be distribute

themselves in the limit according to the equilibrium measure for Ω̄. By a slight abuse

of notation, we will let µΩ represent this measure. In the case of the closed unit disk,

S1, this is simply Lebesgue measure on the circle, denoted by δS1 . This statement

will be made more precise in what follows.

If we let {pk(z)} be an orthonormal basis of Pn according to the inner product

in (5.2), we can write any arbitrary Pn ∈ Pn in the form of (5.1). A Gaussian

measure on Pn will then be defined by the condition that the Zk’s are i.i.d. complex

Gaussians with mean zero and unit variance. This measure will be denoted by γn
Ω,ρ.

An expectation with respect to (Pn, γ
n
Ω,ρ) will be written as En

∂Ω,ρ. Finally, we need

to introduce the normalized distribution of zeros for Pn. This is defined as

Z̃n
Pn

:=
1

n

∑
Pn(z)=0

δz.

In essence, it measures the zeros of Pn. We are now ready to state the main result of

Shiffman and Zelditch.

Theorem 5.0.5 (Shiffman and Zelditch). Suppose that Ω is a simply connected

bounded Cω domain and that ρ is a positive Cω density on ∂Ω. Then,

(5.3) En
∂Ω,ρ

[
Z̃n

Pn

]
= µΩ + O

(
1

n

)
,

where µΩ is the equilibrium measure of Ω̄.

As a further note on notation, in this context O(f(n)) corresponds to a distribution

Tn ∈ D′(C) such that

|〈Tn, φ〉| ≤ cφf(n), ∀φ ∈ D(C),
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where cφ does not depend on n.

This result has motivated our investigation of a similar problem, where the random

sums of orthogonal polynomials are composed of the “classic” orthogonal polynomials.

These would include the Chebyshev, Legendre, and Hermite polynomials. Since the

aforementioned polynomials are all orthogonalized on the real line, or some subset

thereof, the given theorem of Shiffman and Zelditch would not apply. Thus, in what

follows we will lay the groundwork for an investigation into the zeros of such random

sums of orthogonal polynomials. We will also present some results pertaining to the

specific case of Chebyshev polynomials of the first kind.

5.1 Random Sums of Orthogonal Polynomials on

the Real Line

Our discussion here will be closely based on the work of Shiffman and Zelditch in

[29], where the necessary changes are made to handle the case when Ω is a subset of

the real line, rather than a simply connected bounded Cω domain in C.

To start, we will formulate Proposition 3.3 from [29], which refers only to the

specific case of orthonormal polynomials on the closed unit disk.

Proposition 5.1.1 (Shiffman and Zelditch). Let µ = δS1 denote Haar measure on

S1, and let ρ ≡ 1. Then

En
S1,ρ

[
nZ̃n

Pn

]
=

i

2π

[
1

(|z|2 − 1)2 −
(n + 1)2|z|2n

(|z|2n+2 − 1)2

]
dz ∧ dz̄.

Furthermore, En
S1,ρ

[
nZ̃n

Pn

]
= nµ + O(1); that is, for all test forms φ ∈ D(C),

En
S1,ρ

 ∑
{z:Pn(z)=0}

φ(z)

 =
n

2π

∫ 2π

0

φ
(
eiθ
)
dθ + O(1).

In particular, En
S1,ρ

[
Z̃n

Pn

]
→ µ in D′(C).

Once we have the use of this proposition, the idea is to reduce all the other cases

back to the unit disk. In order to accomplish this goal, we must introduce some
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additional notation. Denoting the unit disk as U and letting Ĉ = C ∪ {∞}, for a

simply connected bounded domain Ω let

Φ : Ĉ\Ω −→ Ĉ\U

be a conformal mapping for which Φ(∞) = ∞ and Φ′(∞) ∈ R+. Letting ∗ denote

the pullback, it is a known result that the equilibrium measure for Ω is then given by

(5.4) µΩ = Φ∗δS1 ,

or equivalently, ∫
Ω

φ(z)dµΩ(z) =
1

2π

∫ 2π

0

φ ◦ Φ−1
(
eiθ
)
dθ.

We will now look more closely at our specific sequence of orthonormal polynomials.

For the interval [−1, 1], consider the conformal mapping

(5.5) Φ(z) = z +
(
z2 − 1

)1/2
,

which maps C\[−1, 1] to C\U . Additionally, Φ(∞) = ∞, Φ′(∞) = 1, and Φ takes the

interval [−1, 1] to the upper half of the boundary of U . Also, let our weight function

ρ be given by

ρ(z) = (1− z)α(1− z)β,

where α > −1, β > −1. The orthogonal polynomials generated by this weight

function are called the Jacobi Polynomials. The specific set of polynomials we will

consider are the Chebyshev polynomials of the first kind, which arise when α = β =

−1
2
. These are given by

(5.6) T̃k(z) =
1

2

(
Φk(z) + Φ−k(z)

)
.

Note that the T̃k(z)’s form an orthogonal set, but are not orthonormal. We will define

the orthonormal set of Chebyshev polynomials of the first kind by

T0(z) =
1√
π

T̃0(z),

Tk(z) =

√
2

π
T̃k(z), k > 0.

(5.7)

We are now ready to state our main result.
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Theorem 5.1.1. Let Z1, Z2, . . . be a sequence of independent complex Gaussians, with

mean zero and variance one. Consider the random sum of orthogonal polynomials

given by

Pn(z) =
n∑

k=0

ZkTk(z),

where Tk(z) is the k-th orthonormal Chebyshev polynomial of the first kind defined

above. Let ρ be the weight function given by ρ(z) = (1− z)−1/2(1 + z)−1/2. Then, for

Ω = [−1, 1],

En
∂Ω,ρ

(
Z̃n

Pn

)
= µΩ + O

(
1

n

)
.

Proof. In [29], the authors’ approach was to first prove the desired result for U , then

use a conformal mapping to handle a more general domain. We will follow the same

procedure here. The main changes that need to be made are in section 3.4 of their

work. Keeping the same notation, we will define

Sn(z, z) =
n∑

k=0

|Tk(z)|2 ,

and

SU
n (z, z) =

n∑
k=0

|z|2k .

Now, noting that the proof given for Proposition 3.1 in [29] holds for the present case,

we have the formula

(5.8) En
∂Ω,ρ

[
nZ̃n

Pn

]
=

i

2π
∂∂̄ log Sn(z, z).

Thus, our main goal will be to show that

i

2π
∂∂̄ log Sn(z, z) = nµΩ + O(1),

in D′ (C).

Let

An(z) =
Sn(z, z)

Φ∗SU
n (z, z)

,

where

(5.9) Φ∗SU
n (z, z) =

n∑
k=0

|Φn(z)|2k =

n + 1 if z ∈ [−1, 1]

1−|Φ(z)|2(n+1)

1−|Φ(z)|2 if z ∈ C/[−1, 1].
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From (5.7), for k > 0 we have

|Tk(z)|2 =

∣∣∣∣ 1√
2π

(
Φk(z) + Φ−k(z)

)∣∣∣∣2
=

1

2π

[∣∣Φk(z)
∣∣2 +

∣∣Φ−k(z)
∣∣2 + 2Re

(
Φk(z)Φ−k(z)

)]
.

(5.10)

Now, consider the ellipse in the complex plane with foci at −1 and 1, and semi-axes

given by
1

2

(
r + r−1

)
,

1

2

(
r − r−1

)
,

where r > 1. We will denote such an ellipse by e(r). Φ(z) takes an ellipse of this

form and maps it to the circle of radius r (see Section 1.9 in [30]). Thus, for a point

z of the form

(5.11) z =
1

2

(
r + r−1

)
cos θ +

i

2

(
r − r−1

)
sin θ,

where θ ∈ [0, 2π), it follows that

Φ(z) = reiθ.

For z of the form given in (5.11), (5.10) becomes

(5.12) |Tk(z)|2 =
1

2π

[
r2k + r−2k + 2 cos (2kθ)

]
.

Define

E(R) := {z : z ∈ e(r), 1 < r < R} .

That is, E(R) is all the points inside the ellipse e(R), with the exception of the line

[−1, 1]. For An(z) we then have

An(z) =
1
π

+ 1
2π

∑n
k=1

[
r2k + r−2k + 2 cos (2kθ)

]∑n
k=0 r2k

=
1
2π

∑n
k=0

[
r2k + r−2k

]
+ 1

π

∑n
k=1 cos (2kθ)∑n

k=0 r2k

=
1

2π
+

1
π

∑n
k=1 cos (2kθ)∑n

k=0 r2k
+ o(1).

(5.13)

We will next need to make use of the following lemma.
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Lemma 5.1.1. Let m be Lebesgue measure on the measure space (Ω,F), where Ω =

[0, 2π) and F is the σ-algebra of Lebesgue measurable sets. Then,

m

(
θ :

∣∣∣∣∣
n∑

k=1

cos (2kθ)

∣∣∣∣∣ ≥ n

2

)
≤ 4π

n
.

Proof. For k > 0 define

Xk(ω) := cos (2kω).

Also, for A ∈ F let

P (A) =
1

2π
m (A) .

Then, on the probability triple (Ω,F , P), X1, X2, . . . is a sequence of identically dis-

tributed random variables, which, while not independent, are uncorrelated. Since

E[Xk] = 0 and E [X2
k ] = 1/2, by Lemma 5.1 in [8] it follows that

var

(
1

n

n∑
k=1

Xk

)
=

n∑
k=1

var

(
Xk

n

)
=

1

2n
.

Thus,

P

∣∣∣∣∣ 1n
n∑

k=1

Xk

∣∣∣∣∣
2

≥ 1

4

 ≤ 2

n
,

which proves the claim.

Consider the fraction
1
2π

∑n
k=1 2 cos (2kθ)∑n

k=0 r2k
.

Let m now represent Lebesgue measure on C. For any z ∈ E(R), let z ∈ B if∣∣∣∣∣
n∑

k=1

cos (2k arg (z))

∣∣∣∣∣ ≥ n

2
.

By Lemma 5.1.1, m(B) = O
(

1
n

)
. Also, notice that the inequality

(5.14) An(z) ≥ 1

π
∑n

k=0 r2k
=

r2 − 1

π (r2(n+1) − 1)
,

holds in general. Thus, for φ ∈ D(C) we have∣∣∣∣∫
B

∂∂̄φ(z) log An(z)dm(z)

∣∣∣∣ ≤ ∫
B

∣∣∣∣∂∂̄φ(z) log

(
r2 − 1

π (r2(n+1) − 1)

)∣∣∣∣ dm(z)

≤ c

∣∣∣∣log

(
r2 − 1

π (r2(n+1) − 1)

)∣∣∣∣m(B)

= O(1).

(5.15)

94



Notice next that if z ∈ E(R)\B, then An(z) = O(1). Thus,

(5.16)

∣∣∣∣∫
E(R)\B

∂∂̄φ(z) log An(z)dm(z)

∣∣∣∣ = O(1).

Finally, suppose z ∈ C\{E(R) ∪ [−1, 1]}. Then,
1
2π

∑n
k=1 2 cos (2kθ)∑n

k=0 r2k
= o(1),

which implies that An(z) ∼ c. Thus,

(5.17)

∣∣∣∣∫
C\{E(R)∪[−1,1]}

∂∂̄φ(z) log An(z)dm(z)

∣∣∣∣ = O(1)

as well. Combining (5.15), (5.16), and (5.17), we now have∫
C

∂∂̄φ(z) log An(z)dm(z) = O(1),

which shows that ∂∂̄ log An = O(1) in D′(C). Now, for the weight function w ≡ 1, by

Proposition 3.1 in [29],

En
S1,w

[
nZ̃n

Pn

]
=

i

2π
∂∂̄ log SU

n (z, z).

Applying this result, along with (5.4), (5.8), and Proposition 5.1.1, it follows that

i

2π
∂∂̄ log Sn(z, z) = Φ∗

(
i

2π
∂∂̄ log SU

n (z, z)

)
− i

2π
∂∂̄ log An(z)

= Φ∗ (nµ + O(1)) + O(1)

= nµΩ + O(1).

(5.18)

5.2 Conclusions

The motivation of this chapter was to lay the foundation for some future work in

this area. While we have succeeded in showing that, for the Chebyshev polynomials

of the first kind, the zeros of Pn converge to the equilibrium distribution, we believe

that similar results should hold for the Legendre polynomials, as well as the rest of

the Jacobi polynomials. A further problem that is also of interest is to derive similar

results when Pn is composed of the Hermite polynomials. Thus, we hope that this

extension of Shiffman and Zelditch’s work to the Chebyshev polynomials will lead to

further results on the aforementioned problems.
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Appendix A

To give a clearer view of the types of spectral density functions we may be considering,

we have included here graphs of the spectral density for various covariance functions.

Since the formula for the spectral density is given as an infinite sum (1.3), figures

A.1-A.3 are numerical approximations. Figure A.4 is a graph of the equation given

in (1.4). All of these figures were done in Matlab.
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Figure A.1: Spectral density for Γ(k) = 1
|k|3/2+1
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Figure A.2: Spectral density for Γ(k) = 1
k2+1
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Figure A.3: Spectral density for Γ(k) = 1
k4+1
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Figure A.4: Spectral density for Γ(k) = ρ|k|, ρ = 1
8
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Appendix B

The following figures represent numerical simulations of the complex zeros of random

polynomials with independent standard normal coefficients. All of the computations

were done in Mathematica. In the captions, n represents the degree of the polynomials

generated, while m is the number of realizations of these polynomials generated.

The polynomials were simulated using normally distributed pseudorandom numbers

generated by Mathematica’s Random function. The zeros were then numerically

approximated using the NSolve function.
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Figure B.1: m=100 n=10
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Figure B.2: m=100 n=50
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Figure B.3: m=100 n=100
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