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Abstract. As intelligent tutoring systems (ITSs) continue to grow in
popularity, many classrooms employ a blended learning model that com-
bines these systems with more traditional resources, such as static (i.e.,
non-intelligent) textbooks. Typically in such cases, a large amount of
manual work is required to match the textbook content with the content
covered by the ITS. While resource intensive, this matching is important
as it allows the ITS and textbook to work together in a coherent and
effective manner. Furthermore, matching the content in such a way lets
the textbook take advantage of the adaptivity and sophistication of the
ITS; in effect, this infuses the textbook with some measure of intelli-
gence and adaptivity of its own. Given the importance of this matching
process, in this work we investigate ways in which this workflow can be
automated. To that end, we leverage natural language processing and
machine learning techniques to build classification models for matching
the textbook and ITS content. We then evaluate the potential perfor-
mance of these models both as a fully automated system, as well as
being used in combination with a human expert.

Keywords: Intelligent tutoring system · Adaptive content · Textbook ·
Natural language processing · Semi-supervised learning.

1 Introduction and Related Works

With the growth of intelligent tutoring systems (ITSs) and other digital learn-
ing materials, many classrooms operate under a blended learning model. In these
classrooms, adaptive online resources can be used in combination with more tra-
ditional materials, such as static textbooks. While finding ways in which these
various resources can work together is important, in many instances this work is
labor and resource intensive. One such example occurs in the ALEKS adaptive
learning system (www.aleks.com), in which instructors are given the option of
integrating a traditional textbook into the online ALEKS course. The goal of
this integration is to give a matching of the ALEKS topics with the content con-
tained in the textbook; this matching allows the instructor to tailor the course to
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coincide with the content in the book, hopefully leading to a more seamless and
consistent learning experience for the student. Additionally, another important
benefit of this approach is that it allows a traditional, static textbook to take
advantage of the adaptive and intelligent components of the ITS. For example,
the ALEKS system keeps track of the topics that a student knows or doesn’t
know, as well as the topics that the student is most ready to learn. Using the
matchings of these topics to the textbook content, an instructor can then see
what parts of the textbook the student has already mastered, along with the
parts in which there are gaps in knowledge. In essence, by matching the text-
book content with the ITS topics, the course sequencing and adaptivity of the
system can be used to guide the student through a more personalized path in
the textbook, thereby endowing a basic textbook with several of the advantages
of a more sophisticated intelligent textbook.

While there are clear benefits to this procedure, the matching of the ITS
topics with the textbook content is a laborious task performed by experts who,
in addition to needing to be well-acquainted with the subject matter of the
textbook, must also be familiar with the specific characteristics and peculiarities
of the topics. Furthermore, since the matching must be repeated for each unique
textbook and course pairing, this process requires a large amount of manual
work. Thus, the goal of this study is to investigate techniques by which this
matching of textbook content and ITS topics can be automated.

The problem discussed in this manuscript has many similarities to works such
as [9,10,13], which are concerned with the automated extraction of knowledge
components; in the case of [9,10], this extraction is performed on problems from
ASSISTments, while in [13] the knowledge components are derived from the
content of an online textbook. Other previous studies handling similar problems
include work such as [2], where an approach is outlined for identifying the core
concepts in a textbook section (as opposed to prerequisite concepts which are
not the main focus of the section); [5], which attempts to find similar pairs of
exercises from within a large set of problems; and [6], which links similar con-
tent across textbooks. Our specific approach to solving the problem at hand has
perhaps the most overlap with the techniques used in [9,10]. That is, we leverage
and apply several techniques from machine learning and natural language pro-
cessing to build classification models. Additionally, similar to the approach in
[2], we also take advantage of the available unlabeled data by experimenting with
semi-supervised versions of these models. Once we have developed our models,
we then apply them to our specific problem of matching the ITS topics with the
appropriate textbook content. While the ultimate goal is for the trained clas-
sifier to operate in a completely automated fashion without any human expert
oversight, we also evaluate the possible benefits of using a hybrid approach; in
the latter case, a human expert is still a necessary component of the process,
but the hope is that the classifier can assist the expert and reduce the amount
of manual work required.
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2 Background and Experimental Setup

A course in ALEKS consists of a set of topics that covers a domain of knowl-
edge. A topic is a problem type that covers a discrete unit of knowledge within
this course. Each topic is composed of many example problems that are care-
fully chosen to be equal in difficulty and cover the same content. An example
problem from an ALEKS topic titled “Solving a rational equation that simplifies
to linear: Denominator x” is shown in Figure 1. This is one of the first topics
covering rational equations that a student encounters in an ALEKS course. For
comparison, in Figure 2 an example problem from a more advanced rational
equation topic is shown. While this latter topic is more difficult, both topics are
typically found in the same textbook chapter and section.

Fig. 1. Screen capture of the question and explanation for an ALEKS topic titled
“Solving a rational equation that simplifies to linear: Denominator x.” The text from
the question, explanation, and title are extracted and used to generate the features for
our machine learning models.
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The most commonly used courses cover content from math and chemistry,
with additional courses available for other subject areas such as statistics and
accounting. A course might contain over a thousand topics in total, from which
an instructor is free to choose a specific subset of topics; while in rare cases the
instructor chooses to use all the available topics, a more typical subset consists
of a few hundred. The instructor also has the option of integrating the content
of a textbook with this set of topics. When this is done the topics are matched
to chapters (and possibly sections) within the textbook. In order to obtain this
matching, subject matter experts familiarize themselves with the textbook, and
they then use this knowledge to determine the area of the textbook that best
matches each topic. This procedure is completed for every available topic in the
course, which allows a textbook to be matched with any possible subset of topics
that an instructor chooses to use.

The goal of our study is to evaluate an attempt to automate this matching
of ITS topics with textbook content. In doing so, we treat this as a classification
problem, in which the chapters or sections of the textbook are the class labels.
As this automated procedure is designed to emulate the process used by a human
expert, our training data are extracted from the textbooks in the following way.
Each section in the textbook generates one data point in our training data set;
the features (as discussed in more detail shortly) are extracted from the textbook
content in that section, while the ground truth label is either the chapter number
or the section number. The unlabeled data set then consists of the ALEKS topics.
After the model is trained, it is used to assign labels to these topics, and we can
then compare these labels to those assigned manually by human experts.

For our experiments we use textbooks from three different college level math
courses that are common in the United States: beginning algebra, intermediate
algebra, and college algebra. For each of these textbooks, we rely on the matching
of textbook content and topics that are currently used in the ALEKS system.
Each of these matchings has been created by a single human expert using the
following procedure. The expert first familiarizes themselves with each individual
topic by reading the question and explanation, and also by looking at several of
the example problems contained in the topic. The expert then browses through
the book and matches the topic to a specific chapter (and, in some cases, a
specific section). From each course we choose one or two textbooks to use as
our validation set; the books in this validation set are then used to perform all
of our feature engineering and model selection. Once we are satisfied with the
features, models, and hyperparameters, we then apply these to one additional
book from each math course as our test evaluation. Note that this evaluation on
the test textbooks is different from the conventional machine learning workflow,
in that we are not applying previously trained models to the books in our test set.
Rather, we build new models on each of the books used for our test evaluation,
using the best choice of features and hyperparameters from the validation books,
and we then apply these models to classify the topics in the course. The reason
we use this procedure is that it exactly follows the workflow that would be used
in an implementation of the model within the ALEKS system. That is, in such
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Fig. 2. Screen capture of the question and explanation for an ALEKS topic titled
“Solving a rational equation that simplifies to quadratic: Proportional form, advanced.”
In comparison to the topic shown in Figure 1, this is an advanced problem that requires
the student to solve a complicated rational equation. However, both topics are typically
found in the same textbook chapter and section.
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an implementation there is nothing that prevents the training of a new model for
each textbook; as such, using this testing procedure gives a realistic evaluation of
the performance of the model. Additionally, a key characteristic of this procedure
is that the features of the topics are available to the model during training.

Each of the textbooks is in a digital format, with each textbook section
contained in a separate HTML file. Similarly, each ALEKS topic also has an
associated HTML file, which contains the text of the question, the title of the
topic, and an explanation which contains a worked out solution to the problem.
As we rely heavily on techniques from natural language processing (NLP) to
build our machine learning models, we process the HTML files using the following
procedure. We first remove the HTML tags and extract the content from each of
the files using the Beautiful Soup [12] Python library. Next, we preprocess the
raw text by using the the Gensim [11] Python library to perform several standard
NLP operations, such as removing stop words, punctuation, and numerals, and
stemming each word to its root form.

Once we have processed the text, we build our set of features using an n-gram
model. When building the n-gram model, we restrict the vocabulary to a prede-
termined set of words that have specific mathematical meanings. For example,
words such as add, degree, and triangle are kept, while other less informative
words (for our purposes) are removed. This procedure reduces the size of our
set of features, and on our validation set it also gave a slight boost in perfor-
mance. From this vocabulary we then extract our n-grams, experimenting with
various sequence sizes on our validation set of books. In all all cases we apply
term frequency-inverse document frequency (tf-idf) transformations before feed-
ing the features to the machine learning models. When building the vocabulary
and features for each textbook model, we also include the text from the ques-
tions, titles, and explanations of the topics; as we mentioned previously, in an
actual application of this model, such information would be available during the
model building process.

The textbooks we consider in our study typically have somewhere between 50
and 80 different sections, and each of these sections generates one (and only one)
entry in our labeled set of training data. Thus, because of the limited amount of
labeled data, we also experiment with semi-supervised learning models, in which
the topics are used to generate the unlabeled portion of the data set. Semi-
supervised learning models lie between supervised and unsupervised learning,
and such models are unique in that they are able to take advantage of both
labeled and unlabeled data [1,16]. This can be very useful in situations, such
as ours, where assigning accurate labels to data takes a considerable amount
of manual (human) effort. In such a case, adding the extra unlabeled data can
possibly give a large increase in the accuracy of the model [7,8].

There are two main goals of semi-supervised learning. The goal of inductive
semi-supervised learning is to learn a predictor function that can be applied to
unseen data that is not contained in the training set; this is closely aligned with
the motivations of standard supervised learning algorithms. On the other hand,
transductive semi-supervised learning aims to learn a predictor function that
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can be applied to the unlabeled data in the training set ; by this description,
transductive learning has overlap with clustering and other unsupervised learn-
ing techniques that are not necessarily concerned with generalizing to future
data. When training our models, we treat the problem of classifying the topics
as one of transductive learning, where we use our small set of labeled data (i.e.,
the textbook content) to build a classifier that can help us assign labels to the
topics.

Finally, we should also mention that, in the spirit of previous works such
as [6,14], we experimented with using similarity metrics to find the textbook
content that best matches each ITS topic. For example, in one attempt we used
the doc2vec [4] model to generate vector space embeddings for each section of a
textbook, as well as for each topic. We then used the cosine similarity measure
to find the best match between the topics and textbook content. However, the
results were less accurate in comparison to the classification models.

3 Experimental Results

Most likely due to the small amount of training data available for each textbook,
the best performance on our validation set came from the simplest models we
tried, namely, näıve Bayes and logistic regression classifiers. In comparison, more
advanced model architectures, such as neural networks and random forests, were
not as effective. Thus, on our test textbooks we restrict our evaluations to the
näıve Bayes and logistic regression models; additionally, we also include the
semi-supervised version of näıve Bayes described in Section 5.3.1 of [8],1 as it
also performed well on our validation set. For our n-gram models we use both
unigrams (n = 1) and bigrams (n = 2), the combination of which had the
strongest performance on our validation set. Adding larger values of n gave
slightly worse performance; as before, overfitting on the small amount of training
data seems to be the likely reason for this drop in effectiveness.

To evaluate the performance of our classifiers, we use the probability esti-
mates from the models to extract the most likely chapter match for each topic,
and we then compare these chapter matchings to those from a human expert. To
find the most likely chapter, as determined by the model, we use the following
procedure. Each textbook section is assigned a unique label in the training set.
We apply the models trained on these labels to the ITS topics and find the text-
book section with the highest probability estimate; this section is then mapped
to its corresponding chapter to get the most likely chapter match for the topic.
Somewhat counterintuitively, training the classifiers with the section labels, as
opposed to using the chapter labels, gave stronger performance on our validation
textbooks; thus, for this reason we use this (indirect) approach to find the best
chapter match for each topic.

As a first evaluation, we look at how well the model classifications agree
with the expert classifications. In Table 1 we report Cohen’s kappa and accu-

1 A Python module implementing this model is available at https://github.com/
jmatayoshi/semi-supervised-naive-bayes.

https://github.com/jmatayoshi/semi-supervised-naive-bayes
https://github.com/jmatayoshi/semi-supervised-naive-bayes
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racy statistics for each of the books in our test set. As shown there, the näıve
Bayes classifiers outperform the logistic regression models on all three books.
Additionally, while the difference varies slightly across the textbooks, the semi-
supervised näıve Bayes model consistently outperforms the fully supervised ver-
sion; the stronger performance of the semi-supervised model is consistent with
what we observed on our validation textbooks.

Overall, the results in Table 1 are encouraging, as the Cohen’s kappa scores
for the semi-supervised näıve Bayes models range from 0.722 to 0.791. To get a
relative measure of the performance of the classifiers, one of the authors, who
wasn’t involved in the original matching of the topics, performed a new match-
ing on a random sample of 50 topics from the intermediate algebra textbook
(unfortunately, resources were not available to do a more comprehensive com-
parison). For these 50 topics, 47 labels from this new matching are equal to the
original chapter labels, resulting in a Cohen’s kappa score of 0.930. Thus, while
this comparison is only on a sample of 50 topics (out of the complete set of 802
in the intermediate algebra course), it is evidence that the classifier models are
currently not quite as accurate as human experts.

Table 1. Results for the three test textbooks. The Cohen’s kappa and accuracy val-
ues are computed by comparing the chapter classifications from each model with the
chapter labels from the human expert.

Beginning Intermediate College
algebra algebra algebra

Number of:
Topics 818 802 962
Chapters 10 13 9
Sections 61 69 54

Logistic regression:
Cohen’s kappa 0.685 0.738 0.767
Accuracy 0.720 0.762 0.806

Näıve Bayes:
Cohen’s kappa 0.701 0.768 0.788
Accuracy 0.735 0.789 0.823

Semi-supervised näıve Bayes:
Cohen’s kappa 0.722 0.775 0.791
Accuracy 0.753 0.796 0.826

Our next two evaluations analyze the hypothetical impact of the models if
they were to be used in combination with a human expert. That is, rather than
fully relying on the models to make all of the classifications, in these evaluations
we assume the models are assisting a human expert. We envision a couple of
different scenarios in which this could be done. Our first approach assumes that,
for a given textbook, the classifier would be used to determine the matchings
for which it is most confident; the human expert could then focus their energy
on the classifications that are more difficult for the model to determine. To
evaluate this procedure, we want a measure of how often the most confident
classifications from the model agree with the actual chapter classifications. To
that end, we use the following procedure. For a given textbook, we first find the
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probability of the most likely class for each topic, using the estimates from the
semi-supervised näıve Bayes model; based on these probabilities, the topics are
then put in descending order. Next, for each positive integer n, where n ranges
from 1 to the number of topics in the course, we compute the Cohen’s kappa
score for the first n topics in the ordered sequence (i.e., the n topics for which
the classifier is most confident). For example, employing this procedure with a
value of n = 100, we are computing Cohen’s kappa for the 100 topics with the
highest probability estimates.
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Fig. 3. Plots of the Cohen’s kappa scores for the three test textbooks. For each text-
book, the topics are put in descending order based on the probability estimates from
the semi-supervised näıve Bayes model, and Cohen’s kappa is then computed at each
point in the sequence. For all of the test textbooks, the plot shows that using the
highest 50% of the probabilities returns a Cohen’s kappa value of at least 0.9.

The results from this procedure are shown in Figure 3, where we can see the
evolution of the Cohen’s kappa scores. For example, using the 20% of the topics
in each course for which the classifier is most confident (i.e., 0.2 on the x-axis),
the Cohen’s kappa values are all at 0.95 or above; then, using the 50% of the
topics in each course with the highest probability estimates, the Cohen’s kappa
values are all at 0.9 or above. Based on these results, one seemingly reasonable
scenario would be to let the classifier perform the matchings for, say, the 50%
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of the topics for which it is most confident, and the human expert then handles
the rest.

Our next evaluation assumes that the human expert is involved throughout
the entire process, but that they are being guided by the predictions of the model.
In this scenario, we envision the expert using the recommendations made by the
model to make the matching process more efficient. Specifically, for each topic
we assume that the expert is given a list of the chapters in descending order
based on the model probability estimates. The job of the expert is to then start
with the chapter with the highest probability and check if it indeed matches
the topic; if it doesn’t, the expert moves on and checks the chapter with the
next highest probability, and so on. Thus, in this scenario the model would be
useful if, in most cases, the expert would only need to check a small number of
chapters.

To that end, in Table 2 we show how often the human expert classification is
contained within the n most likely chapters, according to the class probabilities
from the semi-supervised näıve Bayes models. That is, for n = 1 we simply
show how often the chapter from the human expert agrees with the chapter that
the classifier gives the highest probability estimate. Next, for n = 2, we find the
section with the highest probability that is from a different chapter, and we then
report how often the human expert chapter label agrees with either of these two
chapters. The process then continues for the larger n values. From the results in
Table 2 we can see that, the vast majority of the time, the human expert label
is contained within the three or four most likely chapters.

Table 2. Statistics showing the proportion of times the human expert label appears
within the n most likely chapters, as determined by the probability estimates from the
semi-supervised näıve Bayes models.

Beginning Intermediate College
algebra algebra algebra

n = 1 0.753 0.796 0.826
n = 2 0.885 0.895 0.927
n = 3 0.925 0.940 0.962
n = 4 0.950 0.954 0.974

4 Discussion

In this work we built and evaluated models for automatically associating topics
in an ITS system to the most appropriate content from a textbook. We did this
by leveraging NLP techniques and machine learning classifiers, and we analyzed
the results from both supervised and semi-supervised models. When attempting
to match the topics with the appropriate textbook chapters, the results from
applying the models showed fairly strong agreement with the human expert
decisions, as the Cohen’s kappa values ranged from roughly 0.72 to 0.79.
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While the overall performance of the machine learning models is encouraging,
the argument could be made that the current versions are not quite accurate
enough for a fully automated implementation. However, the results from our
analyses seemed to indicate that they could be useful in a hybrid application.
For example, in all three of our test textbooks, using the 50% of topics from
each course with the most confident predictions (i.e., the highest probability
estimates) returns Cohen’s kappa scores of 0.9 or above. Thus, based on this
strong agreement with the human expert labels, a possible procedure would be
to use the matchings for which the classifier is most confident, while the human
expert then concentrates on matching the remaining topics.

Although this current work has focused on the matching of the topics with
the textbook chapters, being able to identify a specific section in the book, while
more challenging, would also be useful. One complication with matching topics
to specific sections is that the problem becomes slightly more ambiguous; that
is, while it is more-or-less straightforward for the human expert to identify a
chapter that is a good fit for the topic, this is not necessarily the case with the
sections. There are many examples where a topic might seem to fit equally well
in two or three different sections; at the other extreme, it may also be possible
that no section appears to match the topic.

Another challenging application would be to match the ALEKS topics with
the various mathematics education standards that are used for K-12 education
in the United States. As with the matching of textbook content, matching the
ITS topics to these education standards would enable instructors to leverage the
information in the ITS. For example, based on the topics the student knows,
the instructor could see what education standards they have mastered and what
they still need to learn. However, similar to the matching of topics to textbook
sections, this problem also introduces extra complexities, as these education
standards can be very specific and narrow in scope.

Fortunately, there are additional modifications to the models that could
lead to large performance gains and make the aforementioned problems more
tractable. First, the current models are entirely text-based; among other things,
mathematical expressions are completely ignored by the models. Thus, a natural
next step would be to incorporate equations and expressions into the features
of the model, which in many cases could allow for very specific information into
the type of material that is being covered. Recent approaches for extracting in-
formation from mathematical formulae, such as those used in [3,15], are highly
relevant and worth investigating in the context of our current problem.

Second, the ALEKS system contains detailed data on the relationships be-
tween the topics in a course. For example, the system has its own clustering of
topics into related groups, and it seems reasonable that topics within the same
group are more likely to appear in the same area of a textbook (or in related ed-
ucation standards). Additionally, the system has information on the prerequisite
relationships between topics. Since it is unlikely that a particular topic would
appear after another topic that it is a prerequisite for, this information could be
useful in refining the matchings and improving their accuracy.
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